1. VISION AND MISSION OF THE UNIVERSITY.

MANONMANIAM SUNDARANARUNIVERSITY, TIRUNELVELI-627012. UG COURSES- AFFILIATEDCOLLEGES

VISION AND MISSION

Vision:

* "To provide quality education to reach the un-reached"

Mission:

- * To conduct research, teaching and outreach programs to improve conditions of human living.
- ❖ To create an academic environment that honours women and men of all races, caste, creed, cultures and an atmosphere that values intellectual curiosity, pursuit of knowledge, academic freedom and integrity.
- To offer a wide variety of off-campus educational and training programs, including the use of information technology, to individuals and groups.
- To develop partnerships with industries and government so as to improve the quality of workplace and to serve as catalyst for economic and cultural development.
- ❖ To provide quality/inclusive education, especially for the rural and un-reached segments of economically downtrodden students including women, socially oppressed and differently abled.

2.VISION AND MISSION OF THE MATHEMATICS DEPARTMENT

MANONMANIAM SUNDARANARUNIVERSITY, TIRUNELVELI-627012.

UGCOURSES-AFFILIATEDCOLLEGES

Department of Mathematics

Vision and Mission

Vision

The longterm vision is to be an internationally leading Mathematics Department that will offer innovative educational programs in Mathematical Sciences and their applications in science and technology

Mission

- ❖ To create an environment that will identify, nurture and encourage mathematical intelligence.
- ❖ To enhance use of mathematical knowledge readily for problem solving, exploring all subjects by proper understanding of the mathematical content with various possible representation.
- To improve the skills of students in Practical Applications and Life Skills by means of a close and continuous monitoring of their progress throughout the course.

3.PREAMBLE

The LOCF (Learningoutcomes based curriculum framework) committee constituted University Grants Commission (UGC) is pleased to submit the report concerning the syllabi of B.Sc with Mathematics as a subject. The committee discussed the framework of syllabi in its meetings and suggests the implementation these syllabi in the Colleges based on following facts.

- 1. The learning outcomes of each paper are designed so that these may help learners understand the main objectives of studying the course
- 2. This will enable learners to select elective papers depending on the individual inclinations and contemporary requirements
- 3. The objectives of the LOCF are to mentally prepare the students to learn mathematics leading graduate degree with mathematics as a subject.
- 4. These syllabi in mathematics under CBCS are recommended keeping in view of the wide applications of mathematics in science, engineering, social science, business and a host of other areas.
- 5. The study of the syllabi will enable the students to equip with the state of the art of the subject and will empower them to get jobs in technological and engineering fields as well as business, education and healthcare sectors.
- 6. The LOCF committee in Mathematics had prepared this draft paying suitable attention objectives and learning outcomes of the papers. These syllabi may be implemented with minimum modifications with appropriate justifications keeping in view regional, national and international contents and needs.
- 7. The outcomes of each paper may be modified as per the local requirements.
- 8. The text books mentioned in references are denotative/demonstrative. The divisions of each paper in units are specified to the context mentioned in course. These units will help the learners to complete the study of concerned paper in certain periods and prepare them for examination.
- 9. The mathematics is a vast subject with immense diversity. Hence it is difficult for every student to learn each branch of mathematics, even though each paper has its unique importance. Under these circumstances, LOCF in Mathematics suggests a number of elective papers also with compulsory papers. A student can select elective papers as per his needs and interests.
- 10. The committee expects that the papers may be taught using various Computer Algebraic systems (CAS) softwares such as Mathematica, MATLAB, Maxima and R to strengthen the conceptual understanding and to wide up the horizon of student's self experience.
- 11. The committee of the LOCF in Mathematics expects that the concern colleges will encourage their faculty members to include necessary topics in addition to courses suggested by LOCF committee. It is hoped that the needs of all around development in the careers of learners will be fulfilled by the recommendations of LOCF in mathematics.

4.PROGRAMME STRUCTURE

MANONMANIAMSUNDARANARUNIVERSITY, TIRUNELVELI-627012. UGCOURSES- AFFILIATEDCOLLEGES

B.Sc. Mathematics

(ChoiceBased Credit System)

(Witheffectfromtheacademicyear 2021 - 2022 onwards)

Par	t Sub.	Subject	SubjectTitle	Hrs/	Credits	Marks				
	No.	Status		Week		Ma	aximu	m	Passing Minim	_
						Int.	Ext	Tot.	Ext.	Tot
Ţ	1	Language	Tamil/OtherLanguages	6	4	25	75	100	30	40
II	2	Language	CommunicativeEnglish-I	6	4	25		100	30	40
	3	Core- IPaper-I	Calculus and ClassicalAlgebra	6	4	25	75	100	30	40
III	4	Addonmajor(Mandatory) Paper-II	ProfessionalEnglishforP hysicalSciences–I	4	4	25	75	100	30	40
	5	Allied- I(ForMaths students)	Statistics-I OR Physicswith Practical	6	3	25	75	100	30	40
		,	/Chemistry withPractical/ ComputerScience**	6	5	25	75	100	30	40
		Allied-I (ForScience students)	AlgebraandDifferentialE quations	6	4	25	75	100	30	40
IV	6	Common	EnvironmentalStudies	2	2	25	75	100	30	40
		Total		30	21/23					
I	7	Language	Tamil/OtherLanguages	6	4	25	75	100	30	40
II	8	Language	Communicative English-II	6	4	25	75	100	30	40
III	9	Core- IIPaper- III	Differential Equations and Analytical Geometry of Three Dimensions	6	4	25	75	100	30	40
	10	Addon major(Mandat ory)Paper-IV	ProfessionalEnglishforP hysicalsciences-II	4	4	25	75	100	30	40
	11	Allied- II(ForMath	Statistics-II OR Physics with Practical	6	3	25	75	100	30	40
		sStudents)	/Chemistry with Practical /ComputerScience**	6	5	25	75	100	30	40
		Allied–II(For ScienceSt udents)	Vector Calculus &FourierSeries	6	4	25	75	100	30	40
ĪV	12	Common	Valuebasededucation	2	2	25	75	100	30	40_
		Total		30	21/23		+		+	+
6 (TD) A 11	ind Cor		 shall be taken by the Depa							Ш.

Sem	Part	Sub.	Subject	Subject Title	Hrs/week	credits			Mark		
	1	No.	Status	Subject 1100			Maximum		Passing minimum		
							Int.	Ext.	Tot.	Ext.	Tot.
III	I	13	Language	Tamil/Other Languages	6	4	25	75	100	30	40
	II	14	Language	English	6	4	25	75	100	30	40
	III	15	CoreIII Paper-V	SequencesandSeries	6	4	25	75	100	30	40
		16	Allied-II	Statistics-I OR Physics with Practical / Chemistrywith Practical / Computer Science	6	5	25	75	100	30	40
		17	Skill	Vector Calculus	4	4	25	75	100	30	40
		17	Based Core	vector Carculus	7		23	73	100	30	40
	IV	18	Non- Major Elective	Anyoneofthefollo wing 1.1) Mathematics forCompetitiveExamina tions-I 1.2) Fundamentals of Statistics-I	2	2	25	75	100	30	40
		19	Common	Yoga*	2	2	25	75	100	30	40
			Total		30	25/27				I	
IV	I	20	Language	Tamil/Other Languages			75	100	30	40	
	II	21	Language	English	6	4	25	75	100	30	40
	III	22	Core-IV Paper-VI	Abstract Algebra	6	4	25	75	100	30	40
		23	Allied-II	Statistics-II OR Physics with Practical / Chemistry with Practical/	6	5	25	75 75	100	30	40
				Computer Science							
		24	Skill Based Core	Trigonometry, Laplace Transforms and Fourier Series	4	4	25	75	100	30	40
	IV	25	Non- Major Elective	Anyone of the Following: 2.1) Mathematics for Competitive Examinations-II 2.2) Fundamentals of Statistics-II	2	2	25	75	100	30	40
		26	Common	Computers for Digital Era*	2	2	25	75	100	30	40
	V		Extension activities	NCC/NSS/YRC/YWF/ PE	-	1	-	-	-	-	-
			Total		30	26/28					
V	III	27	Core-V Paper-VII	LinearAlgebra	5	4	25	75	100	30	40
		28	Core-VI	RealAnalysis	5	4	25	75	100	30	40

		1		1		1	1	1		ı	1
			Paper-VIII								
		29	Core-VII	Statics	5	4	25	75	100	30	40
			Paper-IX	1.50							
		30	Core-VIII	Integral Transforms	5	4	25	75	100	30	40
			Paper-X	and Z Transforms							
		31	Major	Anyone of the Following:							
			Elective-I	1.1) Programming in C							
			Paper-XI	1.2) Discrete Mathematics	4	4	25	75	100	30	40
				1.3) Combinatorial							
				Mathematics							
		32	Major	Anyone of the Following:							
			Elective	2.1) Operations							
			-II	Research-I							
			Paper-XII	2.2) Stochastic Process	4	4	25	75	100	30	40
				2.3) Math Typing using LaTeX	•	•		, ,	100		
	IV	33	Skill	Personality			1				
	1 4		Based	Development	2	2	25	75	100	30	40
			Common	2 C + Gropinent	2	2	23	7.5	100	30	
			Total		30	26					
VI	III	34	Core-IX	ComplexAnalysis	5	4	25	75	100	30	40
, -	111		Paper-XIII		J	•	23	75	100	30	
		35	Core-X	GraphTheory	5	4	25	75	100	30	40
			Paper-XIV								
		36	Core-XI	NumberTheory	4	4	25	75	100	30	40
		27	Paper-XV	Demonica	4	4	2.5	7.5	100	20	40
		37	Core-XII Paper-XVI	Dynamics	4	4	25	75	100	30	40
		38	Core-XIII	NumericalMethods	4	4	25	75	100	30	40
		36	Paper-XVII	rumeneumitemous	4	4	23	13	100	30	40
		39	Major	Any one of the							
			Elective-III	following							
			Paper-XVIII	3.1) Astronomy	4	4	25	75	100	30	40
				3.2) Fuzzy							
				Mathematics 3.3) Mathematical							
				Modeling							
		40	Major	Any one of the							
			Elective-IV	following							
			Paper-XIX	4.1) Operations	4	4	25	75	100	30	40
				Research-II	•	•		, ,			
				4.2) Coding Theory							
				4.3) Programming in C++							
				Total	30	28					
				1 otal	30	40]			l

<u>5.EVALUATION SCHEME (INTERNAL, EXTERNAL, PASSING MINIMUM)</u>

Evaluation Scheme

Internal Marks	25 Marks
External Marks	75 Marks
Maximum	100 Marks
Marks	
Passing	40 Marks
Minimum	

6.MODEL QUESTION PAPER

MODEL QUESTION PAPER- CBCS-PATTERN (UG MATHEMATICS)

MAXIMUM MARKS: 75 TIME: 3 HOURS

Part -A (10×1 = 10 Marks)

Answer all the questions, Choose the correct answer

Question No. 1,2	Unit –I	Question No. 7,8	Unit –IV
Question No. 3,4	Unit -II	Question No. 9,10	Unit –V
Question No. 5,6	Unit –III		

$Part - B(5 \times 5 = 25 Marks)$

Answer all the questions, Choosing either (a) or (b).

Question No. 11(a) or11 (b)	Unit –I	Question No. 14(a) or14 (b)	Unit –IV
Question No. 12(a) or12 (b)	Unit -II	Question No. 15(a) or15 (b)	Unit –V
Question No. 13(a) or13 (b)	Unit –III		

Part -A (8×5 = 40 Marks)

Answer all the questions, Choosing either (a) or (b).

Question No. 16(a) or16 (b)	Unit –I	Question No. 19(a) or19 (b)	Unit –IV
Question No. 17(a) or17 (b)	Unit –II	Question No. 20(a) or20 (b)	Unit –V
Question No. 18(a) or18 (b)	Unit –III		

MODEL QUESTION PAPER CALCULUS AND CLASSICAL ALGEBRA (For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks.

Part-A ($10 \times 1 = 10 \text{ marks}$) Answer All questions

Sl.No	Choose the correct Answer.	Course outcome	Knowledge Level
1.	The curvature of the curve ax+by+c=0 is	CO 1	K1, K5
2.	The radius of the curvature of $y = e^x$ at $(0,1)$ is	CO 1	K1, K5
3.	a)1 b) 2 c) $2\sqrt{2}$ d) none of the above The value of $\int_1^b \int_1^a \frac{dxdy}{xy} = \dots$	CO 2	K2, K3
	a) $log\left(\frac{a}{b}\right)$ b) $log(ab)$ c) logalogb d) none of the above		
4.		CO 2	K2, K3
5.	a) 2 b) 1 c)-2 d)none of the above $\int_0^1 x^2 (1-x) dx = \dots \dots \dots \dots \dots$	CO 3	K2, K4
	a)2 b) $\frac{1}{12}$ c) $\frac{1}{3}$ d)none of the above		
6.	a)2 b) $\frac{1}{12}$ c) $\frac{1}{3}$ d)none of the above $\int_0^{\pi} \int_0^{\pi/2} \int_0^1 r^2 \sin\theta \ dr \ d\theta d\phi = \dots$ a) $\frac{\pi}{2}$ b) $\frac{\pi}{3}$ c) $\frac{\pi}{4}$ d) none of the above.	CO 3	K4
7.	L J T	CO 4	K4, K5
8.	If α , β , γ are the roots of $x^3 + px^2 + qx + r = 0$ then $\sum \frac{1}{\alpha}$ a) $\frac{-q}{r}$ b) $\frac{q}{r}$ c) $\frac{p}{r}$ d) none of the above	CO 4	K6
9.	The roots of the equation $x^n + 1=0$ (n is even) are a) All imaginary b) (n-1) imaginary	CO 5	К3
10	c)(n-2) imaginary d) none of the above One of the roots' of the equation $2x^3 + 3x^2 - 3x - 2 = 0$ is -2, the other roots are a)-2,-1 b) $\frac{-1}{2}$, 1 c) $\frac{-1}{2}$, -1 d) none of the above	CO 5	K6

PART B – $(5 \times 5 = 25 \text{ marks})$

Sl.No	Answer ALL questions, choosing either (a) or (b)	Course outcome	Knowledge Level
11.	a) Find the p-r equation (pedal equation) of the curve $r^2 = a^2 Sin2\theta$ Or	CO 1	K1
	b) Find the co-ordinates of the center of curvature of the curve $x^3 + y^3 = 3axy$ at $\left(\frac{a}{2}, \frac{a}{2}\right)$.	CO 1	K1
12.	a) Find the area of the region common to $y^2 = 4ax$ and $x^2 = 4ay$.	CO 2	K2, K3
	b) If $u = 2xy$, $u = x^2 - y^2$, $x = r\cos\theta$, $y = r\sin\theta$, evaluate $\frac{\partial(u,v)}{\partial(r,\theta)}$ without actual substitution.	CO 2	K2, K3
13.	a) Prove that $ \frac{n+1}{2} = \frac{(2n)! \sqrt{\pi}}{4^n n!} $ Where n=0,1,2 Or	CO 3	K5

	b) Prove that $\int_0^{\pi/4} Sin^p \theta Cos^q \theta d\theta = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{q+1}{2}\right)$	CO 3	K5
14.	a) Show that the sum of the 6^{th} powers of the roots of $x^7 - x^4 + 1 = 0$ is 3	CO 4	K2, K4
	b) If α , β , γ are the roots of the equation $x^3 + ax^2 + bx + c = 0$, form the equation whose roots are $\alpha\beta$, $\alpha\gamma$ and $\beta\gamma$	CO 4	K2, K5
15.	a) Transform the equation $x^4 - 4x^3 - 18x^2 - 3x + 2 = 0$ into an equation with the third term absent. Or	CO 5	K6
	b) Remove the fractional coefficient from the equation $x^3 + \frac{1}{4}x^2 - \frac{1}{16}x + \frac{1}{72} = 0$	CO 5	K6

PART C – $(5 \times 8 = 40 \text{ marks})$

Sl.No	Answer ALL questions, choosing either (a) or (b)	Course	Knowledge Level
		outcome	
16.	a) Find the coordinates of the center of curvature of		K1, K6
	$y = x \log x$ at the point where $\frac{dy}{dx} = 0$.	CO 1	
	Or		
	b) Find the evolute of the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$	CO 1	***
			K1, K6
17.	a) By changing the order of integration, evaluate the		K2, K4
	integral $\int_0^1 \int_v^{2-y} xy dx dy$	CO 2	
	Or		
	b) By changing into polar coordinates, show that	GO 2	170 174
	$\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy = \frac{\pi}{4}.$ Hence evaluate	CO 2	K2, K4
	$\int_0^\infty e^{-t^2} dt.$		
18.	a) Evaluate $\int_0^1 x^m (1-x^n)^p dx$ in terms of gamma		K3, K5
	functions and hence find $\int_0^1 \frac{dx}{\sqrt{1-x^n}}$.	CO 3	
	Or		
	b) Using gamma functions evaluate $\iint xy(1-x-$		***
	$(y)^{1/2} dxdy$ over the area enclosed by the lines	CO 3	K3, K5
	x = 0, $y = 0$ and $x + y = 1$ in the positive		
	quadrant.		
19.	a) Solve $6x^3 - 11x^2 + 6x - 1 = 0$ where roots are		K3
	in harmonic progression	CO 4	
	Or		
	b) If $a + b + c + d = 0$, show that $\frac{a^5 + b^5 + c^5 + d^5}{5} =$		
	$a^{2} + h^{2} + c^{2} + d^{2} a^{3} + h^{3} + c^{3} + d^{3}$	CO 4	K3
	$\frac{a^2+b^2+c^2+d^2}{2} \cdot \frac{a^3+b^3+c^3+d^3}{3}$		
20.	a) Show that the equation $x^4 - 3x^3 - 4x^2 - 2x +$		K1
	1 = 0 can be transformed into a reciprocal		
	equation by diminishing the roots by unity. Hence	CO 5	
	solve the given equation.		
	Or		
	b) Solve the equation $6x^6 - 35x^5 + 56x^4 -$		
	$56x^2 + 35x - 6 = 0.$	CO 5	K1

[➤] K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

7.PROGRAMME OUTCOMES FOR B.Sc MATHEMATICS

PROGRAMME OUTCOMES

- 1. Bachelor's degree in mathematics is the culmination of in-depth knowledge of algebra, calculus, geometry, differential equations and several other branches of mathematics. This also leads to study of related areas like computer science and statistics. Thus, this programme helps the learners in building a social foundation for higher studies in mathematics.
- 2. The skills and knowledge gained has intrinsic beauty, which leads to proficiency in analytical reasoning. This can be utilized in modelling and solving real life problems
- 3. Students undergoing this programme learn to logically questions assertions, to recognise patterns and to distinguish between essential and irrelevant aspects of problems. They also share ideas and insights while seeking and benefitting from knowledge and insight of others. This helps them to learn behave responsibly in a rapidly changing independent society
- 4. Students completing this programme will be able to present mathematics clearly and precisely, make vague ideas precise by formulating them in the language of mathematics, describe mathematical ideas from multiple perspectives and explain fundamental concepts of mathematics to non-mathematicians.
- 5. Completion of this programme will also enable the learners to join teaching profession in primary and secondary schools.
- 6. This programme will also help students to enhance their employability for government jobs, jobs in banking, insurance and investment sectors, data analyst jobs and jobs in various other public and private enterprises.

8.PROGRAMSPECIFIC OUTCOMES

PROGRAM SPECIFIC OUTCOMES

After the completion of B.Sc. program in mathematics, the students are able to have

- **PSO 1: A Solid Foundation in Knowledge:** B.Sc. degree is the culmination of depth knowledge of my core branches of mathematics such as Calculus, Classical Algebra, Analytical Geometry, Differential Equations, Sequence and Series, Abstract Algebra, Real and Complex Analysis, Number Theory, Mechanics, Operation Research, Statistics, Graph Theory, Discrete Mathematics, Trigonometry, Transforms and their application and C++/Python. Thus, this programme helps students in creating a solid foundation for further higher studies and research in mathematics
- **PSO 2:** A Competency in Skills: The skills and knowledge gained have intrinsic logic which leads to proficiency in analytical reasoning critical understanding, analysis and synthetic in order to solve theoretical and practical problems. This can orient students towards applications of mathematics in other disciplines and moreover, it can also be applied in modelling and solving the real-life problems.
- **PSO 3: A Problem-Solving Techniques:** Students undergoing this programme learn to logically understand the question assertions to classify the patterns and to evaluate the difference between the necessities and unnecessities of the problems which helps to analyze the problem clearly and to take correct decision for solving the problems.
- **PSO 4: Interdisciplinary and Research Skills:** Students completing this programme will be able to create and present mathematical concepts clearly and precisely, to describe mathematical ideas from multiple perspectives and to explain fundamental concepts of mathematics to non-mathematics people in a better manner.
- **PSO 5:A Proficiency in Employments:** The programme will help students build up with employability for government jobs, jobs in banking, insurance and investments sectors, data analysis jobs and jobs in various other public and private enterprises.

9.COURSE OUTCOMES

Semester-I Core-I Calculus and Classical Algebra

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credit
	Type	Code	Title	(L)	(T)		(C)
Part-III	Core-I		Calculus and Classical Algebra	90		-	4

Contact hours per semester:90

Contact hours per week:6

Year	Semester	Internal Marks	External Marks	Total marks
I	I	25	75	100

Objective: To explain the curvature and radius of curvature in polar coordinates and Cartesian coordinates. Also to find the roots of the equations by various methods.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Apply the mathematical knowledge to analyze the properties of a curve such as curvature, radius of curvature, Involute and Evolute.	K3, K4
CO2	Classify double and triple integrals	K4
CO3	Identify Beta and gamma function and to apply the rules of beta and gamma function in evaluating double and triple integrals.	K3
CO4	Construct different types of equations and to find the roots of the equations by Newton's Theorem	K1,K6
CO5	Solve the different types of reciprocal equations and to find the number of real roots using Descartes rule of signs.	K6

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	3	3	3	2
CO2	2	3	3	3	1
CO3	3	3	3	1	1
CO4	3	1	3	2	2
CO5	3	1	2	1	2
Total contribution of	14	11	14	10	8
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	93.33	73.33	93.33	66.66	53.33

Course Content

UNIT-1:

Curvature, Radius of Curvature and Centre of curvature in Cartesian and polar Co-ordinates Pedalequation—Involute and Evolute.

UNIT-2:

Double and TripleIntegrals -Changing theorderofintegration—Jacobiansandchangeofvariables.

UNIT-3:

Beta and Gamma functions – Applications of Beta and Gamma Functions in evaluation of Double and TripleIntegrals.

UNIT-4:

Theory of Equations – Formation of equations –Relation between roots and coefficients – symmetric function of the roots. Sum of the powers of the roots of an equation – Newton's theorem.

UNIT-5:

Reciprocal equation-Transformation of equations-Descarte's rule of signs.

TextBooks:

- 1. Narayanan.S and T.K.ManickavachagamPillai-Differential Equations and its applications,
- 2. S.Viswanathan Printers Pvt.Ltd,2006.
- 3. ManickavachagamPillai.T.K,andS,Narayanan -Algebra -Viswanathan Publishers and Printers Pvt.Ltd,2004.

BooksforReference:

- 1 KandasamyPandK. Thilagavathi- Mathematics forB.Sc.,VolumeII–2004,S.Chand&Co.,NewDelhi.
- 2. KandasamyPandK.Thilagavathi-MathematicsforB.Sc.,-2004,VolumeIandVolumeIV, S.Chand&Co.,NewDelhi.
- 3. Apostol T.M. Calculus, Vol. I (4thedition) John Wiley and Sons, Inc., Newyork1991.
- 4. ApostolT.M.Calculus, Vol. II(2nd edition) John Wiley and Sons, Inc., New York 1969.

Semester-I/III Allied Paper-I

Statistics- I (For Mathematics Students)

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical	Credit (C)
Part-III	Allied		Statistics-I	90	-	-	3

Contact hours per semester:90

Contact hours per week:6

Year	Semester	Internal Marks	External Marks	Total marks
I/II	I/III	25	75	100

Objective: To study the concepts of measures of dispersion and measures of central tendencies and also to develop the concept of probability distributions.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcomes	Knowledge Level
No.		
CO 1	Find and relate the concepts of moments, skewness and kurtosis and to demonstrate the method of least squares and to classify parabolic, exponential and logarithmic curves.	K1, K2, K3
CO 2	Interpret correlation and regression and to illustrate Karl's Pearson's coefficient of correlation and also the lines of regression and coefficient of regression	K2
CO 3	Develop the statistical techniques used in the theory of attributes and to analyze consistency of data and criteria independence and to interpret Yule's coefficient of association.	K3, K4
CO 4	Explain distribution function and its properties, able to find mathematical expectation and to find the cumulants using generating function.	K2
CO 5	Distinguish discrete and continuous probability distributions and to construct binomial, Poisson distribution	K4, K6

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	2	3	2	1
CO2	3	2	3	3	2
CO3	2	2	3	2	1
CO4	2	1	2	1	1
CO5	3	2	3	2	2
Total contribution of	13	9	14	10	7
COs to PSOs					
Weighted Percentage	86.66	60	93.33	66.67	46.66
of COs contribution					
to PSOs					

Course Content

UNIT-1:

 $Moments, Skewness and Kurtosis-Curve fitting-method of least squares-Fitting lines-Parabolic, \\ Exponential and Logarithmic curves.$

UNIT-2:

Correlation and Regression – Scatter Diagram – Karl Pearson's coefficient of correlation – Properties – Lines of Regression – Coefficient of Regression and Properties – Rank Correlation.

UNIT-3:

Association of Attributes - Consistency of data - Criteria in dependence - Yule's Coefficient of Association.

UNIT-4:

Random variable – Distribution function – Properties of Distribution function – Mathematical Expectation – Multiplication theorem of Expectation – Moment generating function – Cumulants – Characteristic function – Properties of Characteristic function.

UNIT-5:

Discrete and continuous Probability Distributions - Binomial and Poisson Distribution and their moments, Generating function, characteristic function, properties and simple applications. Normal Distribution — Standard normal distribution and their properties—simple problems.

TextBooks:

- 1. Arumugam&ThangapandiIsaac,Statistics,New Gamma Publishing House,July 2016 for Unit I,II,III
- 2. Gupta.S.C and V.K.Kapoor-Fundamentals of Mathematical Statistics, Sultan Chand &sons, New Delhi. (2002) for (Unit IV &V)

BooksforReference:

- 1. Vittal, V.R., Mathematical Statistics, Maragatham Publications, 2004
- 2. D.C.Sacheti&KapoorStatistics, Sultan Chand & Sons, New Delhi, 2017.

Semester I/III Allied paper-I Algebra and Differential equations (For Science Students)

			(- 0- ~				
Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical	Credit (C)
Part-IV	Allied		Algebra	90	_	_	3
			and Differential equations				

Contact hours per semester:90

Contact hours per week:6

Year	Semester	Internal Marks	External Marks	Total marks
I/II	I/III	25	75	100

Objective: To explain the simple concepts of the theory of equations and to find the roots of the equations by using techniques in various methods.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Construct different types of equations and to compare and to find the relationships between roots and coefficients.	K6, K1
CO2	Identify the transformation of equations and to find approximate solutions to equations by making use of Newton's Method and Korner's Method.	К3
СОЗ	Identify types of matrices and to find the characteristic equation of matrix. Eigen values and eigen vectors can be determined by applying Cayley Hamilton Theorem.	K3, K5 ·
CO4	Distinguish the differential equations of first order and higher degrees and to identify the equations which are all solvable for p, x, y and the equations in the standard form Pp+Qq=R.	K3, K4
CO 5:	Identify and distinguish Laplace transformation and inverse Laplace transformation	K3,K4

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

CO-PSO mapping (Course Articulation Method)								
PSOs	PSO1	PSO2	PSO3	PSO4	PSO5			
COs								
CO1	3	2	3	1	2			
CO2	3	3	3	2	1			
CO3	2	3	3	1	2			
CO4	3	3	2	3	2			

CO5	2	2	3	2	2
Total contribution of	13	13	14	9	9
COs to PSOs					
Weighted Percentage	86.6	86.6	93.3	60	60
of COs contribution					
to PSOs					

Course Content

UNIT-1:

Theory of Equations – Formation of Equations – Relation between roots and coefficients – Reciprocal equations.

UNIT-2:

Transformation of Equations method and Horner's method.

-Approximatesolutionstoequations

-Newton's

UNIT-3:

Matrices – Characteristic equation of a matrix – Eigen values and Eigen vectors – Cayley Hamilton theorem and simple Problems.

UNIT-4:

Differential equation of first order but of higher degree – Equations solvable for p,x, y – Partial differential equations – formations – solutions – Standard form Pp+Qq=R.

UNIT-5:

Laplace transformation-Inverse Laplace transform.

TextBooks:

1. Dr.S.Arumugam& Isaac – Allied Mathematics Paper- I,New Gamma Publishing House (2012),PalayamKottai

BooksforReference:

- 4. Narayanan.S and T.K.ManikavachagamPillai-Differential Equations and its applications, S.Viswanathan Printers Pvt.Ltd,2006.
- 5. T. Veerarajan-Algebra and Trigonometry- Yes Dee Publishing Pvt.Ltd.,(2009)

Semester -II
Core II
Differential Equations and Analytical Geometry of Three dimension

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical	Credit (C)
Part-IV	Core-II		Differential Equations and Analytical Geometry of Three dimension	90	-	-	4

Contact hours per semester:90

Contact hours per week:6

Year	Semester	Internal Marks	External Marks	Total marks
I	II	25	75	100

Objective: To explain ordinary differential equations with constant and variable coefficients and to describe sphere, intersection of two spheres and tangency of spheres

Course Outcomes: On successful completion of the course, the students should be able to

CO No.	Course Outcomes	Knowledge Level
CO1	Solve the differential equations which are all solvable for x, y, p and Clairaut's form. Also, to illustrate the method of solving the differential equations of the form f_1 (D)x+ g_1 (D)y= h_1 t, f_2 (D),x+ g_2 (D)y = h_2 (t).	K2,K6
CO2	Identify and solve the second order linear differential equation with constant coefficients and to interpret the linear equations of second order with variable coefficients.	K2, K3, K6
CO3	Analyze the 3D-co-ordinate systems and how to find the direction cosines and direction ratios. Also to find the angle between planes, the length of the perpendicular and angle of bisection.	K1,K4
CO4 .	Find and classify the equation of lines in different forms and calculate the image of the point, image of a line and to distinguish lines and planes. The angle between the line and plane can be determined. coplanar lines can be shown and the shortest distance between	K1,K2,K5
CO5	The equations of spheres and circles of intersection can be interpreted and	K2,K4

to illustrate and analyze the tangency
of sphere.

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	2	3	1	2
CO2	3	2	3	2	1
CO3	3	3	2	3	2
CO4	2	3	3	2	1
CO5	3	1	2	1	1
Total contribution of	14	11	13	9	7
Cos to PSOs					
Weighted Percentage	93.33	73.33	86.66	60	46.66
of COs contribution					
to PSOs					

Course Content

Unit I:

First order higher degree equations -Solvable for x,y,p and Clairaut's Form-Simultaneous Differential equations of the form $f_1(D)x + g_1(D)y = h_1(t)$, $f_2(D)$, $x + g_2(D)y = h_2(t)$

Unit II:

Ordinary Differential Equations-Second Order linear Differential Differential Equations with constant Coefficients-Find the P.I for the function of the form $e^{ax} f(x)$ and $x^n f(x)$ -Linear Equation of second order with Variable coefficients.

Unit III:

AnalyticalGeaometryof 3D -Co-Ordinate system, Direction Cosines, Direction Ratios-Equation of planes in different forms-angle between planes-Length of perpendicular-angle of bisection.

Unit IV:

Equation of a line in different forms-image of a point-image of a line-The plane and the straight line-angle between plane and the line-Coplanar lines-Shortest distance between two lines.

Unit V:

Sphere-Tangent plane-Circle of intersection-Tangency of spheres-Orthogonal spheres.

Text Books:

- **1.** Narayanan.S and T.K.ManikavachagamPillai-Differential Equations and its applications, S.Viswanathan Printers Pvt.Ltd,2006
- 2. ManickavachagamPillai.T.K.,andT.Natarajan-A Text book of Analytical Geometry-Part II-Three dimensions-S.Viswanathan (Printers & Publishers) Pvt.Ltd(2012)

Book For Reference

- 1. Kandasamy.P and K.Thilagavathi-Mathematics for B.Sc., Vol. III and VI-S.Chand and Co., New Delhi (2004)
- 2. Braun .M-Differential equations and their applications (III Edition)Springer-Verlag, Newyork (1983)
- 3. Boyce. W.E and R.C.Diprima-Elementary Differential Equations and Boundary value problems (VII Editions)-John Wiley and Sons, Inc, Newyork (2001)

Allied Paper -II Statistics-II (For Mathematics Students)

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical	Credit (C)
Part-IV	Allied		Statistics-II	90	-	-	4

Contact hours per semester:90

Contact hours per week:6

Year	Semester	Internal Marks	External Marks	Total marks
I/II	II/IV	25	75	100

Objective: To know the importance of Correlation and regression and also to explain the basic concepts of various types of distribution.

Course Outcomes: On successful completion of the course, the students should be able to

CO No.	Course Outcomes	Knowledge Level
CO 1	To list out the characteristics of index numbers and to find Laspeyer's and Paache's, Fisher and Bowley's Edgeworth's index numbers. The method to classify and analyse the unit test, commodity reversal test, time reversal test and circular tests can be shown.	K1, K2
CO2	Construct testing of hypothesis and to distinguish null hypothesis and alternative hypothesis. Type I and Type II errors can be classified. The level of significance and test of significance for large samples can be explained.	K2, K4, K6,
CO3	Identify the distributions such as t-distributions and F-distribution. By making use of t-test the single mean and difference of means can be found out. Variance ratio test based on Chi-Square distribution by making use of this the goodness of fit can be decided.	K1, K3,K5
CO4	To find analysis of variance. One way and two way classified data can be explained and to randomize block design. Latin squarescan be analysed and constructed.	K1,K4,K5
CO5	To explain statistical quality control and its advantages. Process control can be illustrated by making use of this control chart, range chart, P-chart can be designed	K2,K3

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	2	3	1	1
CO2	3	3	3	3	2
CO3	3	2	2	3	2
CO4	2	3	2	3	3
CO5	3	2	3	2	1
Total contribution of	14	12	13	12	9
COs to PSOs					
Weighted Percentage	93.33	80	86.66	80	60
of COs contribution					
to PSOs					

Course Content

UNIT-1:

Characteristicsofindexnumbers —Laspeyer's and Paache's—Fisher's and Browley and Edgeworth's indexnumbers Tests—UnitTest, CommodityReversalTest, TimeReversalTest, CircularTest.

UNIT-2:

Testing of Hypothesis – Null hypothesis and Alternate hypothesis – Type I and Type II errors - Critical Region, Level of significance – Test of significance for large samples – Testing a single proportion – Difference of proportions Testing as ingle mean and Difference of means..

UNIT-3:

Testsbasedont-distribution-SinglemeanandDifferenceofmeans-TestsbasedonF-Distribution-Variance RatioTestbasedonChi-Square Distribution-Independence-Goodnessoffit.

UNIT-4:

Analysis of Variance – one way and two way classified data – Basic of experimental design – RandomizedBlockDesign–LatinSquare–Simple Problems.

UNIT-5:

Statistical Quality control— Definition— Advantages, Process Control—Control Chart, Mean Chart, Product Control—Sampling Inspection Plans.

TextBooks:

- 1. Statistics—Arumugan&ThangapandiIssac,New Gamma Publications,2016(Unit-I,II&III).
- 2. Gupta. S.C&V.K.Kapoor–FundamentalsofMathematicalStatistics– (2002)SultanChand&Sons,NewDelhi,for(Unit-IV &V).

BooksforReference:

- 1. Vittal.P.R–MathematicalStatistics, MaragathamPublications, 2004.
- 2. DCSacheti&Kapoor–Statistics, Sultan Chands New Delhi, Reprint-2017
- 3. R.S.N Pillai&Bagavathi, Statistics Theory and Practice, S Chand and Company Ltd, Reprint 2018.

ţ

Semester II/IV Vector Calculus and Fourier Series Allied Paper II (For Science students)

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical	Credit (C)
Part-IV	Allied		Vector Calculus and Fourier Series	90	-	-	4

Contact hours per semester:90

Contact hours per week:6

Year	Semester	Internal Marks	External Marks	Total marks
I/II	II/IV	25	75	100

Objective: To know the concepts of vector differentiation and vector integration.

Course Outcomes: On successful completion of the course, the students should be able to

CO No.	Course outcomes	Knowledge level
CO1	Analyze what is meant by vector differentiation and how to apply vector differentiation and its properties	K4, K3
CO2	Evaluate the double and triple integrals.	K5
CO3	Analyze and apply vector integration. By making use of Vector integration line, surface and volume integralscan be interpreted.	K2, K3, K4
CO4	Analyze and apply Green's, Stokes and divergence theorems	K3
CO5	Determine the functions whether the functions are odd or even. By making use of these concepts half range series can be found out.	K3, K5

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	3	3	2	2
CO2	3	3	3	3	2
CO3	3	3	2	2	1
CO4	2	2	3	1	1
CO5	3	2	2	2	1
Total contribution of	14	13	13	10	7

Page | 23

COs to PSOs					
Weighted Percentage	93.33	86.66	86.66	66.67	46.67
of COs contribution					
to PSOs					

Course Content:

UNIT-1:

Vectordifferentiation-Gradient-Divergenceandcurl.

UNIT-2:

Evaluationofdoubleandtripleintegrals

UNIT-3:

Vectorintegration-Line, surface and volume integrals.

UNIT-4:

Green's, Stoke's and Divergence theorems (without proof)-simple problems.

UNIT-5:

Fourier series-Evenandoddfunctions-HalfrangeFourierseries.

Text Books:

1.Dr.S.Arumugam& others- Allied Mathematics Paper-II ,New Gamma Publishing House, Palayamkottai, 2012.

2.T.K.ManicavachagomPillai-Calculus (VolII), S.Vishvanathan Printer and Publisher PVT.LTD(2012)

BooksforReference:

- 1. Dr. S.Arumugamandothers-Analytical Geometry 3D & Vector Calculus, NewGammaPublishingHouse, Palayamkottai. (2017).
- 2. Susan.J.C-VectorCalculus(4thEdition),PearsonEducation,Boston(2012).
- 3. MurraySpiegel-Vectoranalysis SchaumPublishing company, NewYork (2009).

Semester-III

Core-III SEQUENCES AND SERIES

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credit
	Type	Code	Title	(L)	(T)		(C)
Part-III	Core-		Sequences	90	-	-	4
	III		And				
			Series				

Contact hours per semester:90

Contact hours per week:6

Year	Semester	Internal Marks	External Marks	Total marks
II	III	25	75	100

Objective: Toacquirebasicideasofclassicalanalysis and to studythe behavior ofsequences and series.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Analyse the real number system and also to classify rational and irrational numbers. To find the upper bounds, least upper bounds and maximum elementand to elaborate triangleinequality and Cauchy-Schwartz Inequality.	K1,K2,K4
CO2	Categorize the sequences as bounded sequences, monotonic sequences, convergent sequences and divergent sequences. Also to find the algebra of limits	K1,K4
CO3	Demonstrate the behavior of monotonic sequences and to apply Cauchy's first limit theorem, Make use of Cauchy's Second limit theorem and Cesaro's Theorem. Contruct subsequence and to explain Cauchy's general principle of convergence.	K2,K3,K6
CO4	Interpret the series and to apply n th term test,Comparison test,Kummer'stest, D'Alembert's ratio test,Raabe's test, Guass test and root test to compile the nature of the series.	K2, K3,K6
CO5	Analyse the alternating series .Apply the test for convergence for series of arbitrary terms.Also to identify the power series and to determine the radius of convergence.	K1,K3,K4,K5

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	3	3	2	3	2
CO4	3	1	3	2	2
CO5	3	1	2	1	2
Total contribution of	14	10	13	12	10
COs to PSOs					
Weighted Percentage	93.33	66.67	86.67	0.8	66.67
of COs contribution					
to PSOs					

Course Content

UNIT-1:

Inequalities, Triangle inequalities, Cauchy-Schwartz inequality, Sequences, Bounded Sequences, Monotonic Sequences. (Sec 2.1-2.3, 2.5, 3.1-3.4).

UNIT-2:

Convergent Sequences, Divergent and Oscillating Sequences, The algebra of limits, Behaviour of monotonic Sequences. (Sec 3.5-3.8)

UNIT-3:

Some theorems on limits, Subsequences, Cauchy Sequences, Series of positive terms-Infinite series, Comparison test (Sec 3.9,3.10,3.12,4.1 & 4.2).

UNIT-4:

Kummer'stest, Root test and condensation test (Section 4.3,4.4)

UNIT-5:

Series of arbitrary terms, Alternating Series, Tests for convergence of series of arbitrary terms.

TextBooks:

❖ S. Arumugam, A.ThangapandiIssac and A.Somasundaram-" Sequences and series"—YesdeePublications, Chennai. (First reprint 2021).

Book for Reference:

- ➤ ShantiNarayan&Dr.M.D.Raishinghania,ElementsofRealanalysisS.Chand&Co.,R evisedEdition 16th (2014)
- EllinaGrigorieva- MethodsofSolvingSequenceandseriesProblem-SpringerLink.
- ➤ Richard R.Goldberg"Methodsofrealanalysis"Oxford and IBHPublicationsCo.Pvtlimited, New Delhi ,Indian Edition 1975.
- Tom.MApostol–MathematicalAnalysis, NarosaPublishinghouse,NewDelhi. (Reprint 1985).

Semester -III Skill Based Core- Paper I VECTOR CALCULUS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credit
	Type	Code	Title	(L)	(T)		(C)
Part-III	Skill		Vector	60	-	-	4
	Based		Calculus				
	Core-I						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
II	III	25	75	100

Objective: Tolayagoodfoundationofvectordifferentiationandvectorintegration. Also Tosolveproblemsrelatedtothis.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Classify the vector point function and scalar point function. Determine the derivative of a vector and derivative of product of scalar and vector function.	K2,K5
CO2	Find divergence, curl. Make use of the Laplacian operator.	K1,K3
CO3	Interpret the integration of point function and to illustrate line integral. To solve surface integral.	K5,K6
CO4	Analyze and solve the volume integral. Also to illustrate and make use of Guass Divergence Theorem to solve problems.	K2, K3,K6
CO5	To solve problems based on Green's theorem and Stoke's Theorem	K6

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	1	3
CO2	2	2	3	2	1
CO3	3	3	3	3	2
CO4	3	1	2	2	1
CO5	1	1	2	3	3
Total contribution of	12	10	13	12	10
COs to PSOs					
Weighted Percentage	80	66.67	86.67	80	66.67
of COs contribution					
to PSOs					

Course Content

UNIT-1:

Vector point functions, Scalar point functions – Derivative of a vector and derivative of sum of vectors – Derivative of product of a scalar and vector point function – The vector operator ∇ - Gradient

UNIT-2:

Divergence—Curl, solenoidal, irrotational vectors—Laplacian operator.

UNIT-3:

Integrationofpointfunction-Lineintegral-Surfaceintegral.

UNIT-4:

VolumeIntegral—Gaussdivergencetheorem(StatementwithoutProof)—Problems.

UNIT-5:

Green's theorem and Stoke's theorem (Statement without Proof)—Problems.

TextBook:

Duraipandian and LaxmiDuraipandian, Vector Analysis-Emerald Publishers (Revised Edition, Reprint 2005).

Books for References:

- ➤ Dr. S.Arumugamandothers—Vector Calculus, NewGammaPublishingHouse.(2006).
- Susan.J.C-VectorCalculus(4thEdition),PearsonEducation,Boston(2012).
- ➤ MurraySpiegel-Vectoranalysis SchaumPublishingcompany, NewYork(2009).
- ➤ Dr.M.K. Venkataraman and Mrs.Manorama Sridhar, Vector Calcus and Fourier Series, The National Publishing Company, Chennai-1, (2002)
- R.Gupta, Vector Calculus, FIREWAL Media (An imprint of Lakshmi Publications Pvt.Ltd)-New Edition, Copyright 2010.

SEMESTER-III

Non -Major Elective Paper I

Mathematics for competitive Examinations -I

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Type	Code		(L)	(T)		(C)
Part-III	Non		Mathematics	30	-	-	2
	major-I		for				
	-		competitive				
			Examinations				
			-I				

Contact hours per semester:30

Contact hours per week:2

Year	Semester	Internal Marks	External Marks	Total marks
II	III	25	75	100

Objective: To learn the techniques for solving aptitude problems and to enable the students prepare themselves for various competitive examinations.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Interpret simplification and find averages	K1, K2
CO2	Determine ratio and proportion	K5
CO3	Assess partnership and solve percentage problems	K4,K5
	1	
CO4	Distinguish profit and loss	K4
CO5	Solve problems on numbers	K6

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	3	2	3	3	1
CO3	2	3	2	3	2
CO4	3	1	3	2	2
CO5	1	1	1	3	2
Total contribution of	12	10	12	14	10
COs to PSOs					
Weighted Percentage	80	66.67	80	93.33	66.67
of COs contribution					
to PSOs					

Course Content

Unit -1:

Simplification, averages.

Unit -2:

Ratioand proportion.

Unit-3:

Partnership-percentages.

Unit-4:

Profit and Loss

Unit-5:

Problems on numbers.

Text Book:

* R.S.Agarwal -Objective arithmetic, Published by S.Chand& Co Ltd. Edition 2018

Book for References:

- * R.S.Agarwal Arithmetic subjective and Objective ,Published by S.Chand& Co Ltd. Revised Edition 1st April 2017
- * Rajesh Verma, Fast track Objective arithmetic, Arihant Publications India Limited Fourth Edition, 1st January 2018.

SEMESTER-III

Non -Major Elective Paper I

FUNDAMENTALS OF STATISTICS-I

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Type	Code		(L)	(T)		(C)
Part-III	Non		Fundamentals	30	-	-	2
	major-I		of Statistics-I				

Contact hours per semester:30

Contact hours per week:2

Year	Semester	Internal Marks	External Marks	Total marks
II	Ш	25	75	100

Objective: To introduce the new concept of Measure of Central Tendency to other major students .Also to study about correlation, regression and to solve simple problems.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Vnowledge Level
	Course Outcome	Knowledge Level
No.		
CO1	Analyse the classification of datas. Also to	K3, K6
	construct bar diagram and Pie chart.	
CO2	Illustrate measure of central tendency and to	K1,K2
	find mean, median and mode.	
CO ₃	Explain the measure of dispersion .Also to	K4,K5
	find standard deviation, variance, quartile	
	deviation and to obtain the relationship	
	between them.	
CO4	Interpret correlation and to solve rank	K2,K6
	correlation problems.	
CO5	To find solution for regression equations	K1, K6

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	3	2	3	3	1
CO3	3	3	3	3	3
CO4	3	2	3	3	2
CO5	1	2	2	1	2
Total contribution of	13	12	14	13	11
COs to PSOs					
Weighted Percentage	86.67	80	93.33	86.67	73.33
of COs contribution					
to PSOs					

Course Content

UNIT-1:

Classification of datas-BarDiagram-Pie chart.

UNIT-2:

Measures of central tendency: Mean, median, mode (with frequency).

UNIT-3:

Measuresofdispersion:Range-standarddeviation, Variance-Quartiledeviation.

UNIT-4:

Correlation—Rankcorrelation(Problemsonly)

UNIT-5:

Regressionequations(Problemsonly)

TextBook:

> Dr. S. Arumugam, A. Thangapandi Issac-Statistics, New Gamma Publishing House, Palayamkottai. (2016)

BooksforReference:

- ➤ S.P.Gupta-ElementaryStatisticalMethods,SultanChand&Sons,(2017).
- T. Veerarajan, FundamentalsofmathematicalStatistics, YesDeePublishing Pvt, Ltd.. (2017)
- C.B.Gupta and Vijay Gupta, An Introduction to Statistical Methods, Vikas Publishing House Pvt.Ltd.New Delhi –(1973)

Semester -IV CORE -IV ABSTRACT ALGEBRA

Category	Course Type	Course	Course Title	Lecture	Tutorial	Practical	Credit
Dowt III		Code		(L)	(1)		(C)
Part-III	Core		Abstract Algebra	90	-	-	4

Contact hours per semester:90

Contact hours per week:6

Year	Semester	Internal Marks	External Marks	Total marks
II	IV	25	75	100

Objective: To acquire knowledge about the concept of groups,rings and fields and to study about the concept of homomorphism.

Course Outcomes: On successful completion of the course, the students should be able to

	Knowledge Level
)
Explain the definitions of groups and its	K2,K4
examples. Also to determine the order of an	
element.Illustrate about Subgroups.	
Interpret cyclic groups and to find the	K1,K3,K6
generators of cyclic subgroups. Illustrate	
and apply Lagrange's Theorem, Euler's	
Theorem and Fermat's Theorem.	
laborate about Normal Subgroups and	K4,K5
roup homomorphism.Illustrate	
somorphism ,Automorphism .Also to	
apply Cayley's theorem wherever required.	
Compare and classify Rings and its	K1,K6
pes.Illustrate about Integral domain and	
Fields .To summarize about maximal and	
minimal ideals.	
Utilize the concept of homomorphism and	K3,K5
isomorphism on rings .Also to find kernel of	
homomorphism and to make use of	
fundamental theorem.	
ì	examples. Also to determine the order of an element. Illustrate about Subgroups. Interpret cyclic groups and to find the generators of cyclic subgroups. Illustrate and apply Lagrange's Theorem, Euler's Theorem and Fermat's Theorem. Iaborate about Normal Subgroups and roup homomorphism. Illustrate omorphism, Automorphism. Also to apply Cayley's theorem wherever required. Compare and classify Rings and its pes. Illustrate about Integral domain and Fields. To summarize about maximal and minimal ideals. Utilize the concept of homomorphism and isomorphism on rings. Also to find kernel of homomorphism and to make use of fundamental theorem.

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	2	2	2
CO4	2	1	3	1	2
CO5	2	2	2	1	2
Total contribution of	12	11	13	10	12
COs to PSOs					
Weighted Percentage	80	73.33	86.67	66.67	80
of COs contribution					
to PSOs					Dog

Page | 33

Course Content

UNIT-1: Groups – definition and examples-Elementary properties of groups – subgroup – order of an element– centre of a group –Normaliserand Centralizer – Product of two Subgroups – order of HK – Intersection and unionofsubgroups

UNIT-2 Cyclic groups—generators of a cyclic group—Cosets and Lagrange's theorem—Euler'stheorem—Fermat'stheorem.

UNIT-3:Normal Subgroups-Quotient groups — Group Homomorphism — Canonical homomorphism — Kernel of a homomorphism—Isomorphism—Automorphism—Inner automorphism—Permutation groups—Cayley's theorem.

UNIT-4:Rings:Definition and examples – Types of rings – Elementary properties of a ring – Integral domain – Field – Subrings – Subfields – Ideals – Principal ideal – Quotient ring – Maximal and prime ideals.

UNIT-5:Homomorphism of rings – Isomorphism – Kernel of a homomorphism – Fundamental theorem.

TextBook:

❖ S.Arumugam and A.ThangapandiIssac "Modern Algebra" - Scitech Publications, Privatelimited.(2008)

Books for Reference:

- M. L.Santiago, Modern Algebra McGraw-Hill Education India Pvt. Limited, (2002).
- ➤ T K. ManickaVachagampillai and others Modern Algebra VisvanathanPublishers(2011).
- VisvanathanNayak, Modern Algebra-EmeraldPublishers, Reprint1992.

SEMESTER -IV Skill Based Core-Paper- II TRIGONOMETRY,LAPLACE TRANSFORMS AND FOURIER SERIES

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Type	Code		(L)	(T)		(C)
Part-III	Skill		Trigonometry,	60	-	-	4
	Based		Laplace				
	Core		Transforms and				
			Fourier Series				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
II	IV	25	75	100

Objective: To understand the concept of Trigonometry and to acquire knowledge about Laplace Transform and its inverse. Also to study the concept of Fourier series and to solve problems by making use of it.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Summarize about Trigonometry and to	K2,K3
	illustrate about the expansion of sinnx,	
	cosnx, Sin ⁿ x, Cos ⁿ x	
CO2	Obtain the relationship between hyperbolic	K1,K4
	functions and circular function. Explain	
	about inverse hyperbolic functions. To find	
	summation of the series using C+iS method.	
CO3	Illustrate laplace transform	K5
CO4		K6
	Solve differential equations with constant	
	coefficientsby making use of Laplace	
	Transforms.	
CO5	Solve problems based on Fourier series .	K3,K6
	Identify the odd and even functions and to	
	deduce half range series.	
	1 770 77 1 1 1 770 1 1 774 1 775 5	1 . 77.6.0

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	2	2	2
CO4	3	2	3	1	2
CO5	3	3	1	1	1
Total contribution of	14	13	12	10	11
COs to PSOs					
Weighted Percentage	93.33	86.67	80	66.67	73.33
of COs contribution					
to PSOs					

Course Content:

UNIT-1:

Trigonometry: Expansion of sinnx, cosnx, tannx and expansions of sinⁿx and cosⁿx.

UNIT-2:

Hyperbolic functions – Relation between hyperbolic functions and circular functions – Inverse hyperbolic functions – Logarithm of a complex number–Summation of series using C+iS method

UNIT-3:

Laplace transforms.

UNIT-4:

Inverse transforms, Solving linear differential equations with constant coefficients using Laplace Transforms.

UNIT-5:

Fourier Series–Definition, Finding Fourier coefficients for a given periodic function with period 2π and 21,odd and even functions, Half range series.

TextBook:

- ❖ Arumugam. SandThangapandiIssac.A—TrigonometryandFourier Series.
- ❖ T.K. ManickavachagamPillaiandS. Narayanan –Differentialequations and its applications, S. Viswanathan Publishers 2011.

Books for reference:

- T. Veerarajan-Algebraand Trigonometry- YESDEEPublishing pvt.Ltd., Chennai. (2020).
- ➤ RayHanna.J—FourierSeries, TransformsandBoundaryvalueProblems, Dover PublicationsNewYork,2008.
- ➤ Dr.M.K.Venkataraman and Mrs.ManoramaSridhar, Vector Calculus and Fourier Series, The National Publishers Company, Chennai (2002).

SEMESTER-IV

Non-Major Elective -II

MATHEMATICS FOR COMPETITIVE EXAMINATION-II

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Type	Code		(L)	(T)		(C)
Part-IV	Non		Mathematics for	30	-	-	4
	Major		competitive				
	J		examinations-II				

Contact hours per semester:30

Contact hours per week:2

Year	Semester	Internal Marks	External Marks	Total marks
II	IV	25	75	100

Objective: To learn the techniques for solving aptitude problems. Also to motivate the students for attending various competitive examinations.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Analyse and solve the problems based on simple interest and compound interest.	K2,K6
CO2	Apply short tricks on solving time and work problems	K3
CO3	Making use of the concept of time and distance while solving problems	K5
CO4	Utilize Chain rule	K4
CO5	Find solutions for pipes and Cistern problem	K1

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	2	2	2
CO4	3	2	3	2	3
CO5	3	3	1	3	3
Total contribution of	14	13	12	13	14
COs to PSOs					
Weighted Percentage	93.33	86.67	80	86.67	93.33
of COs contribution					
to PSOs					

Course Content:

UNIT-1:

Simple interest and Compound interest.

I	Ī	N	J	Ī	٦	Г	_	2	

Time and work.

UNIT-3:

TimeandDistance.

UNIT-4:

Chain Rule.

UNIT-5:

Pipes and Cistern

TextBook:

* R.S.Agarwal-ObjectiveArithmetic,PublishedbyS.Chand&CoLtd.,Edition(2018).

BooksforReference:

- ➤ Rajesh Verma-Fasttrack Objective arithmetic, Arihant Publications (India) Limited., Fourth Edition 1st January 2018.
- ➤ R.S.Aggarwal, Arithmetic Subjective and objective, Published by S. Chandand. Co. Ltd. Revised Edition. 1st April 2017.

_

SEMESTER -IV

Non-Major Elective -II

FUNDAMENTALS OF STATISTICS-II

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credit
	Type	Code		(L)	(T)		(C)
Part-IV	Non		Fundamentalsof	30	-	-	4
	Major		Statistics-II				

Contact hours per semester:30

Contact hours per week:2

Year	Semester	Internal Marks	External Marks	Total marks
II	IV	25	75	100

Objective: To know the concept of attributes and to study the index numbers and simple problems.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Explain the theory of Attributes	K3
CO2	Illustrate about index numbers and to	K1,K5
	determine the weighted index numbers.	
CO3	Analyse and predict consumer price index	K6
	numbers	
CO4	Evaluate Time series	K4
CO5		K2
	Apply curve fitting for straight line ,parabola	
	and exponential curve	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	2	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	2	2	2
CO4	3	2	1	2	3
CO5	2	3	1	3	3
Total contribution of	12	13	11	13	14
COs to PSOs					
Weighted Percentage	80	86.67	73.33	86.67	93.33
of COs contribution					
to PSOs					

Course Content:

UNIT-I

UNIT -II

Index number -weighted index number.

UNIT – III

Consumer Price index number -conversion of index number.

UNIT-IV

Time series –measurement of trends.

UNIT-V

Curve fitting-Straight line -Parabola -Exponential curve.

TextBook:

❖ Dr. S. Arumugam, A. ThangapandiIssac- Statistics, New Gamma Publishing House, Palayamkottai (2016).

Books for Reference:

- ➤ S.P.Gupta-Elementary Statistical Methods, Sultan Chand & Sons, 2017).
- ➤ T. Veerarajan Fundamentals of mathematical Statistics, YesDee Publishing Pvt.Ltd.Edition .(2017)

Semester-V

Core-V LINEAR ALGEBRA

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Type	Code		(L)	(T)		(C)
Part-III	Core-V		Linear Algebra	75	-	-	4

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To acquire knowledge about vectors spaces, Inner product space and linear transformations. Also to solve problems in Matrices

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Explain the definitions and general	K1, K2
	properties of vector spaces. Also to explain	
	subspace. They know where to apply	
	fundamental theorem of homomorphism.	
CO2	Determine the span of a set and to check	K4
	whether the given set is Linearly dependent	
	or not. Also to find basis and dimensions.	
CO3	Illustrate and apply Rank Nullity	K3,K6
	theorem.Explain the definitions and	
	examples of inner product space. Apply	
	Gram Schmidt Orthogonalization process.	
CO4	Construct matrices and also to summarize	K2, K6
	the elementary transformations.Determine	
	the Inverse of matrix and rank of a matrix.	
	To make use of Cayley Hamilton Theorem.	
CO5	Determine Eigen Values and Eigen Vectors.	K4,K5
	Identify bilinear forms and quadratic	
	forms.Also To deduce Diagonal form from	
	Quadratic form.	
	1 70 77 1 77 1 77 1 77 1 77 1 77 1 77 1	1

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	3	3	2	3	2
CO4	2	1	3	2	2
CO5	2	2	2	1	3

Page | **41**

Total contribution of	12	11	13	12	11
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	80	73.33	86.67	0.8	73.33

UNIT-1:

Vectorspaces: Definition and examples—Elementary properties—subspaces—linear transformations—Fundamental theorem of homomorphism.

UNIT-2:

Spanofaset-linear dependenceandindependence-basis and dimension.

UNIT-3:

Rank - Nullity theorem - Matrix of a linear transformation - Inner product space - Definitionandexamples-orthogonality - orthogonal complement-Gram Schmidtorthogonalization process.

UNIT-4:

Matrices –Elementarytransformation–Inverse and power of a matrix using CayleyHamilton'stheorem–Inverse and rank of a matrix using elementary transformations.

UNIT-5:

Eigen values and Eigen vectors – Properties and problems – Bilinear forms – Quadratic forms –Reductionofquadraticformtodiagonalform.

TextBook:

❖ S.Arumugan&ThangapandiIssac ,Modern Algebra-Scitech Publication,Reprint(2008).

BooksforReference:

- > SharmaJ.NandVashisthaA. R.LinearAlgebra-KrishnaPrakashNandir1981.
- ➤ JohnB. Fraleish–AfirstCourseinAbstractAlgebra 7thedition, Pearson, 2002.
- ➤ N. Ramabhadran&R.Balakrishnan, Textbookofalgebra VikasPublishingCo.RevisedEdition1985.
- ➤ Ward Cheney and David Kincaid, Linear Algebra-Theory and Applications. Jones and Barlett India PVT Ltd, New Delhi -First Edition (2010)

Semester-V

Core-VI REAL ANALYSIS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Core-		Real	75	-	-	4
	VI		Analysis				

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To acquire knowledge about the real number system and metric spaces. Also to study the concepts of connectedness and compactness.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Explain about Metric spaces and to construct an open ball .Also to interpret interior	K1,K3
CO2	Interpret about closed sets and to find closure. To determine limit points. Analyze about complete metric space. Discuss about Cantor's intersection theorem and Baire's Category theorem.	K2,K4
CO3	Summarize continuity. Illustrate about uniform continuity.	K3,K5
CO4	Explain about connectedness and to deduce the connected subsets of R .To obtain the relationship between connectedness and continuity	K4,K6
CO5	Illustrate about compactness and to find the connected subsets of R.Illustrate and make use of Heine Borel Theorem .To determine the relationship between compactness and continuity.	K3,K6

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	3	3	2	3	2
CO4	1	2	3	2	2
CO5	1	2	2	3	3
Total contribution of	10	12	13	14	11

'age | **43**

COs to PSOs					
Weighted Percentage	66.67	80	86.67	93.33	73.33
of COs contribution					
to PSOs					

UNIT-1:

Metricspaces – Examples – boundedsets – openball – opensets – subspaces – interior of a set.

UNIT-2:

Closed sets-closure-limit points-dense set-complete metric space-Cantor's intersection theorem-Baire's category theorem.

UNIT-3:

Continuity-Homeomorphism-UniformContinuity

UNIT-4:

Connectedness–Connectedsubsetsof**R**–Connectedness and continuity–Contraction mapping theorem.

UNIT-5:

Compactness–Compactmetricspaces–Compactsubsetsof**R**–HeineBoreltheorem–Equivalent characterizations forcompactness–Compactnessand Continuity.

TextBook:

❖ Dr. S. Arumugan, Modern Analysis - Yes Dee Publishing Pvt. Ltd. Reprint (2019).

Books for Reference:

- ➤ RichardR.Goldberg-MethodsofRealAnalysis-OxfordandIBHPublishingCo.NewDelhi,Indian edition 1985.
- ➤ RVisvanathanNayak,RealAnalysis-EmeraldPublishers, Reprint1992.
- > Dr.B.S.Vatsa,Introductionto Real Analysis,CBS Publishers and Distributors,New Delhi.

Semester-V

Core-VII STATICS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Core-		Statics	75	-	-	4
	IX						

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To provide the basic knowledge of equilibrium of a particle and to develop a working knowledge to handle practical problems.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		_
CO1	Explain the forces acting at a point and to	K2,K4
	apply the parallelogram law of forces,	
	Triangle law of forces and Lami's theorem.	
CO2	Interpret parallel forces and moments.	K1,K6
	Analyse the resultant of two parallel forces	
	and the resultant of two unlike unequal	
	parallel forces.To applyVarigon's theorem.	
CO3	Summarize equilibrium of three forces acting	K3,K5
	on a rigid body and to illustrate three	
	coplanar forces theorem and to make use of	
	the above theorem to solve problems	
CO4	Explain about laws of friction.Also to	K1,K2,K6
	determine the angle of friction and Illustrate	
	about the equilibrium of a particle and to	
	make use of the concepts to solve the	
	problems.	
CO5	Interpret the equilibrium of strings. To deduce	K2,K4
	the equation of catenary and its geometrical	
	properties.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos	2	2	2	2	2
CO1	3	3	3	3	3

CO2	3	2	3	3	1
CO3	3	3	2	3	3
CO4	1	2	3	2	3
CO5	1	2	1	3	3
Total contribution of	11	12	12	14	13
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	73.33	80	80	93.33	86.67

UNIT-1:

Forcesactingatapoint-Parallelogramlawofforces-Triangle lawofforces-Lami's theorem

UNIT-2:

Parallelforcesandmoments—resultantoftwoparallelforcesresultantoftwounlikeunequal parallel forces—Varigon'stheorem

UNIT-3:

Equilibrium of threeforces acting on a rigid body—three coplanar forces theorem.

UNIT-4:

Friction—Lawsoffriction—angleoffriction—equilibriumofaparticle(i)onaroughinclinedplane(ii)underaforceparalleltothe plane(iii)underany force

UNIT-5:

Equilibrium of strings—equation of the common catenary—tension at any point—geometrical properties of common catenary

TextBook:

❖ M.K. Venkatraman–Statics, Agasthiar Publications, Trichy(2020).

Booksforreference:

- S.Narayanan, Statics S.Chandand Company, New Delhi (1985).
- ➤ K.ViswanathaNaikandM.Kari,Statics,EmeraldPublishers,Chennai.
- ➤ I.Rajeswari–Mechanics-SarasPublication, Nagercoil(2016).

Semester-V

Core-VIII INTEGRAL TRANSFORMS AND Z TRANSFORMS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Core-		Integral	75	-	-	4
	VIII		Transforms				
			and Z				
			transforms				

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To develop the knowledge of transforms and to solve problems in Fourier transforms and Z transforms.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Apply Fourier transforms and to explain the properties.	K2,K4
CO2	Solve problems on infinite Fourier cosine and Sine Transforms	K1,K6
CO3	Identify and solve Finite Fourier transfoms	K3,K5
CO4	Illustrate Z transforms and its properties.	K1,K2,K6
CO5	Utilize inverse Z transforms to solve difference equations.	K2,K4

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-1 50 mapping (Course Articulation Method)					
PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	3	3	3	3
CO2	3	2	3	3	1
CO3	1	3	2	2	3
CO4	2	2	3	1	3
CO5	2	3	2	2	3
Total contribution of	11	13	13	12	13
COs to PSOs					
Weighted Percentage	73.33	86.67	86.67	80	86.67
of COs contribution					
to PSOs					

UNIT-1:

Fourier Transforms-Properties of Fourier Transforms.

UNIT-2:

Infinite Fourier Cosine and Sine Transforms-Properties.

UNIT-3:

Finite Fourier Transforms.

UNIT-4:

Z-transforms-Properties.

UNIT-5:

Inverse Transforms- Introduction to difference equations and find solution using inverse Z transforms

TextBook:

❖ Singaravelu. A–Eingineering mathematics (volumeIII) –MeenakshiAgency, Chennai (2019).

Books for Reference:

- ➤ MuthuKumaraswamy.R- Transforms and Partial Differential Equation Equations—YesDee Publications—Second Edition(2019).
- ➤ Gangatharan, Engineering Mathematics (volume I) Prentice Hall of India Pvt.Ltd.(2007).
- > <u>Dr.C.Muthulakshmi@Saisikala</u> and R.Ponraj- Transformsand their applications, Charulatha Publication(2020).

Semester-V

Major Elective-I PROGRAMMING IN C

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Type	Code		(L)	(T)		(C)
Part-III	Non		Programming	60	-	-	4
	Major -		in C				
	Ī						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To study the basic concepts and structure of C program and to train the students to write simple C programs.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Summarize about character set. Classify the	K3,K4
	keywords and identifiers. Identify the	
	constants, variables and data types.	
CO2		K1,K6
	Apply different types of operators and to	
	make use of input and output operators.	
CO ₃		K2,K5
	Compile programs by utilizing decision	
	making and branching statements. Also to	
	apply Decision making and looping	
	statements while develop a program.	
CO4	Make use of one dimensional and two	K3,K6
	dimensional arrays. Also to utilize Character	
	arrays and strings and its functions while	
	compiling the program	
CO5	Illustrate user defined functions and illustrate the	K2,K5
	definitions of functions and return values and their	
	types. Also to categorize function call, function	
	declaration.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	2	2	2	3

CO2	2	3	3	3	2
CO3	2	3	2	2	3
CO4	2	2	3	3	3
CO5	2	2	2	3	3
Total contribution of	11	12	12	13	14
COs to PSOs					
Weighted Percentage of	73.33	80	80	86.67	93.33
COs contribution to PSOs					

UNIT-1:

Introduction – Character set, C tokens ,keywords and identifiers, Constants ,Variables andDatatypes.

UNIT-2:

Operators – Arithmetic, relational, logical assignment, increment and decrement, Conditional, Bitwise special operators, Precedence of operators, Managing input and output operators – getchar(),putchar(),scanf()andprintf().

UNIT-3:

Decision making and branching-Simple if, if else, nested if and the else if ladder statements, The switch statement, The ?: operator, The goto statement. Decision making and looping-while, Dowhile and forstatement, jumps in loops.

UNIT-4:

Onedimensionalandtwodimensionalarrays-declaration, initialization of arrays,

Multidimensionalarrays, Characterarrays and strings: Declaring and initializing string variables, Reading and writing of strings, string handling functions.

UNIT-5:

Userdefinedfunctions-

Definition of function, return values and their types, function calls, function declaration, Category of functions, Nestingo ffunctions, recursion.

TextBook:

❖ E. Balaguruswamy - Programming in ANSI C –Tata McGraw Hill Publishing company limited – III Edition(2017).

Booksforreferences:

- C. ReemaThareja, ProgramminginC-OxfordUniversityPress(2018).
- Ramasamyet.al.-Programmingin C-ScetechPublication(INDIA)Pvt.Ltd.IIEdition(2015).
- AshokN.Kamathane- ProgrammingwithAnsiandTurboC—DorlingKindersley(India)Pvt.Ltd,(2009).

Semester-V Major Elective-I DISCRETE MATHEMATICS

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Type	Code		(L)	(T)		(C)
Part-III	Non		Discrete	60	-	-	4
	Major -		Mathematics				
	Ī						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To study concepts of mathematical logics and to understand the basics of Lattices and Boolean Algebra.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		G
CO1	Illustrate and use the statements, notations	K2,K3
	and connectives .Construct truth table and	
	utilize conditional and biconditional	
	statements.	
CO2	Analyze and explain Predicate calculus	K1,K4
CO3	Elaborate Groups and monoids. Also to	K6
	develop Group codes	
CO4	Construct Lattices and special	K5
	lattices. Analyze and explain Boolean algebra	
CO5	Convert From one form to another form	K2,K6
	(Decimal, Binary, Octal, Hexadecimal).	
	Evaluate Binary addition, subtraction	
	multiplication and division.	
77.1 D	1 770 77 1 1 1 770 1 1 774 1 1 775 7	1 . T. C. C

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	2	3	1	3
CO2	3	3	3	3	2
CO3	3	3	2	1	3
CO4	2	3	3	3	3

CO5	1	3	2	3	2
Total contribution of	12	14	13	11	13
COs to PSOs					
Weighted Percentage	80	93.33	86.67	73.33	86.67
of COs contribution					
to PSOs					

UNIT-1: Mathematical logic – Statements and notation, Connectives, Negation, Conjunction, Disjunction, Statement formula and truth table ,Conditional and biconditional statements. Well defined formulae,tautologies.

UNIT-2: Normal forms - The theory of interference for the statement calculus, The Predicate, Theory of inference for the Predicate Calculus.

UNIT–3: Algebraic structures - Groups and monoids, Simple properties, Group codes.

UNIT–4: Lattices and Booleanalgebra -Lattices asposets, Properties of lattices, special lattices, Boolean algebra, Gating networks, Minimalsumsofproducts.

UNIT–5:Numbersystemand codes - Decimal, Binary, Octal, Hexadecimal—Conversion from one to another—Binary addition, subtraction, multiplication and division, BCD, Weighted excess time, Gray code.

TextBook:

❖ J.P.Tremblayand Manohar-Discretemathematical structures with application to Computer Science (Tata McGrawHill) NewDelhi, 43rd edition 2013.

BooksforReference:

- M. K. Venkataramanandothers Discretemathematics The National Publishing Pvt. Ltd. (2000).
- ➤ G. Balaji- Discretemathematics- BalajiPublishersChennai(2013).
- ➤ T. Veerarajan-Discrete mathematics Tata McGraw Hill -2009.
- ➤ GarettBirkhoff-Lattice Theory, American Mathematical Society (1948).
- ➤ M.K.Sen,B.C.Chakraborty,Introduction to Discrete Mathematics, Books and Allied (P) Ltd (2009).

Semester-V Major Elective-I COMBINATIONAL MATHEMATICS

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Type	Code		(L)	(T)		(C)
Part-III	Non		Combinational	60	-	-	4
	Major -		Mathematics				
	I						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To know the basic concepts of pairings and to understand relations

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		G
CO1	Explain Selections and to find binomial coefficients. Classify ordered selections and unordered selections.	K1,K3
CO2	Solve pairing problems	K3
CO3	Explain recurrence and classify the types of relations using generating functions.	K2,K5
CO4	Illustrate The inclusion and exclusion principles.	K4,K6
CO5	Construct and solve block designsand square block designs.	K5

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	3	2	3	1	3
CO2	2	1	2	3	1
CO3	2	2	2	1	2
CO4	2	1	1	3	1
CO5	1	3	2	3	1

Total contribution of	10	9	10	11	8
COs to PSOs					
Weighted Percentage	66.67	60	66.67	73.33	53.33
of COs contribution					
to PSOs					

UNIT-1:

Selections and Binomial coefficients-Permutations-Ordered selections-unordered selections-Miscellaneous Problems.

UNIT-2:

Parings Problems–Pairings within a set–Pairing between sets.

UNIT-3:

Recurrence–Fibonacci–type relations using generating functions–Miscellaneous methods.

UNIT-4:

The Inclusion-Exclusion Principles.

UNIT-5:

Block designs-square block designs.

TextBook:

❖ IanC.Andersen—A first course in combinatorial mathematics —Clarendon Press,Oxford(1989).

Books for Reference:

RalphP.Grimaldi,B.V.Ramona – Discrete and combinatorial mathematics—an applied introduction (IV edition).

Semester-V Major Elective-I OPERATIONS RESEARCH -I

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Major		Operations	60	-	-	4
	elective		Research-I				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	V	25	75	100

Objective: To introduce the various techniques of operations research

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Solve Linear Programming Problem by	K4
	making use of Graphical method, Simplex	
	method.	
CO2		K3
	Interpret the concept of duality.Classify	
	primal and dual problems.Utilizing the	
	concept of duality ,solve problems on dual	
	simplex method.	
CO3		K2,K5
	Solve Transportation problems by making	
	use of North – west corner rule, Matrix-	
	Minima method, Vogel's Approximation	
	rule. Evaluate Degeneracy and unbalanced	
	transportation problems.	
CO4	Determine the solution for Assignment	K1,K6
	problems.	
CO5	Solve sequencing problems.	K5

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
					Page

Cos					
CO1	3	3	3	1	3
CO2	2	1	2	3	3
CO3	2	1	2	3	2
CO4	2	3	1	3	3
CO5	3	3	2	3	3
Total contribution of	12	11	10	13	14
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	80	73.33	66.67	86.67	93.33

UNIT-1:

Linear Programming Problem: Mathematical formulation of LPP-Graphical method, Simplex method-Artificial variable technique.

UNIT-2:

Concept of Duality-Primal and Dual problems-Duality-Dual Simplex method.

UNIT-3:

Transportation Problem:North-west Corner rule–Matrix-Minima method–Vogel's approximation method–MODI method–Degeneracy and unbalanced Transportation problem.

UNIT-4:

Assignment Problem: Hungarian method – Unbalanced assignment problems.

UNIT-5:

Sequencing Problem: n jobs and two machines – n jobs and three machines – 2 jobs and m machines.

TextBook:

★ KantiSwarup, P. K. Gupta and Manmohan – Operations Research – Sultan Chand and sons,(New Delhi)12thedition(2006)

BooksforReference:

- ➤ GuptaP.KandD.S.Hira-OperationsResearch—S.Chand&Sons Reprint (2012).
- ➤ B. J.RanganathandA. S.Srikantappa—OperationsResearch—YesDeePublishingHouse,Chennai(2017).
- ➤ HamdyA. Taha Operations research, Anintroduction 8th Edition Prentice Hall India (2006).
- ➤ A.C.S.Kumar, Operation Research, Yes Dee Publications, Chennai, 3rd Reprint 2019.

Semester-V Major Elective-I STOCHASTIC PROCESS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Major		Stochastic	60	-	-	4
	Elective		Process				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
Ш	V	25	75	100

Objective: To understand the concepts of stochastic process and understand the generalization of Poisson process

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Determine the generating functions .Also to	K1,K3
	analyze and explain Stochastic Process and	
	specification of stochastic process	
CO2	Interpret Markov Chains .Also to analyze	K2,K4
	the classification of states and	
	chains.Illustrate the stability of Markov	
	chain.	
CO3		K2,K5
	Classify Markov chain with denumberable	
	states and Markov chain with continuous	
	state space.	
CO4		K1,K6
	Illustrate Markov Process with discrete state	
	space by using Poisson Process.	
CO5	Elaborate Erlang Process.	K5
	1 770 77 1 1 1 770 1 1 774 1 1 775 7	1 . 17.6.0

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos CO1	3	3	3	1	3
CO2	2	1	2	3	3

CO3	1	1	2	3	2
CO4	2	3	1	3	3
CO5	3	3	2	3	2
Total contribution of	11	11	10	13	13
COs to PSOs					
Weighted Percentage	73.33	73.33	66.67	86.67	86.67
of COs contribution					
to PSOs					

UNIT-1:

Generating functions—Laplace transform of probability distribution, Classification of distribution, Stochastic process, specification of stochastic process.

UNIT-2:

Markov chains – Definition and examples, Higher transition probabilities, Generalisation of independent Bernoulli Trails, classification of states and chains, Determination of Higher Transition Probabilities—stability of Markov systems.

UNIT-3:

Markov chain with Denumerable number states – Reducible chains ,Statistical inference for Markov chains, Markov chain with continuous state space, Non homogeneous chains.

UNIT-4:

Markov process with discrete state space–Poisson process, Poisson process and related distributions, Generalisation of Poisson process, Birth and Death process.

UNIT-5:

Markov process with Discrete state space–Derived Markov chains, Erlang Process.

TextBook:

❖ J.Medhi–Stochastic Process–New Age International Publishers Pvt.Ltd.Third Edition. 2009.

Books for Reference:

- SuddhenduBiswas Applied Stochastic Process New Central Agency Pvt. Ltd., Kolkatta (2012).
- ➤ PaulG.Hoel,SidneyPort&CharlesJ.Stone—IntroductiontoStochasticprocess—WavelandPress—Boston(1987).
- ➤ V.Thangaraj, Stochastic Process and their applications, New Age International Publishers, New Delhi, First Edition (1995).

Semester-VI Major Elective- IV MATH TYPE USING LATEX

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-IV	Major		Math	60	-	-	4
	Elective		Type				
			using				
			Latex				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce coding and decoding concepts. Also to develop the students in the field of coding theory

Course Outcomes: On successful completion of the course, the students should be able to

	To a course, the	
CO	Course Outcome	Knowledge Level
No.		
CO1	Type words, sentences and symbols not in the	K1,K3
	keyboard usingTex	
CO2	Analyze Text environments	K2,K4,K5
CO3	Type math by making use of spacing rules, equations	K5
CO4	Type spacing of symbols building new symbols, math alphabets and symbols	K2,K6
CO5	Write latex documents by making use of abstract, sectioning, cross referencing and Bibliographies.	K4

➤ K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	1	3	3	3	3
CO2	2	1	3	2	1

CO3	2	1	2	3	2
CO4	3	2	3	3	1
CO5	3	3	3	3	3
Total contribution of	11	10	14	14	10
COs to PSOs					
Weighted Percentage	73.33	66.67	93.33	93.33	66.67
of COs contribution					
to PSOs					

Unit-I

Typing text: Words, sentences and paragraphs-symbols not on the keyboard-comments and footnotes-Changing font Characteristics-Lines, paragraphs and pages-spaces-Boxes.

(Chapter 5, section 5.1 to 5.9, pages 61 to 115)

Unit-II

Text environments: some general rules for displayed text environments-List of environments-style and size environments-proclamations(theorem-like structures)-Proof environments-Tabular environments-Tabbing environments-Miscellaneous displayed text environments.

(Chapter 6, section 6.1 to 6.8, pages 117 to 149)

Unit-III

Typing math:Mathenviroments-spacing rules-equations--spacing rules-equations-Basic constructs-Arithmetic operations-Delimiters-Operators-Math accents-Stretchable horizontal lines-formula gallery.

(Chapter 7, section 7.1 to 7.9, pages 151 to 186)

Unit-IV

More math: Spacing of symbols building new symbols-math alphabets and symbols-vertical spacing-Tagging and grouping-Generalized fractions-Boxed formulas.

(Chapter 8, section 8.1 to 8.6, pages 187 to 206)

Unit-V

Latex documents: The structure of a document-The preamble-Abstract-Sectioning-Cross referencing-Bibliographies.

(Chapter 10, section 10.1 to 10.6, pages 245 to 270)

Text Book:

❖ George Gratzer, More Math into LaTeX, 4th edition, Springer, 2007.

Books for Reference:

- ➤ Helmut KopkaandPatricW.Daly,A guide to LaTeX,Fourthedition,Addison-Wesley.
- ➤ David R.Wilkins, Getting started with LaTeX, SecondEdition.

Practical:

Typing texts and Tables: Chapter 4.1- Inserting Figures Chapter 5.1-Mathematical Equations: Chapter 6.3-Inserting references: Chapter 7.6-Preparing an article for mathematical journal.

Semester-VI

Core-IX COMPLEX ANALYSIS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Core-		Complex	75	-	-	4
	IX		Analysis				

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To understand the concepts of complex variables and to learn about elementary transformations in complex variables.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		<u> </u>
CO1	Explain analytic functions and determine the	K2, K3
	functions of a complex variables and to	
	utilize Cauchy Reimann equations	
CO2	Elaborate Bilinear Transformations and	K4,K5
	classify the elementarytransformations.	
	Also to find fixed points.	
CO3	Illustrate complex integrations and to make	K1,K6
	use of Cauchy's Integral Formula	
CO4	Explain Series Expansions and to determine	K2, K6
	Taylor's Series, Laurent's Series. Determine	
	zeros of an analytic function.	
CO5	Determine residues and to make use of	K4,K5
	Cauchy's Residue Theorem. Also to evaluate	
	definite integrals	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					

CO1	3	3	3	3	3
CO2	2	2	2	3	1
CO3	3	3	3	3	2
CO4	1	2	2	2	2
CO5	1	2	1	1	3
Total contribution of	10	12	11	12	11
COs to PSOs					
Weighted Percentage	66.67	80	73.33	80	73.33
of COs contribution					
to PSOs					

UNIT-1: Analytic functions - Functions of a complex variable, Limits, theorems on limit, continuous function, Differentiability, The Cauchy-Riemann equations, Analytic functions, Harmonic functions.

UNIT–2:Bilinear Transformations – Elementary Transformations, Cross Ratio, Fixed Points of Bilinear Transformations, Some Special Bilinear Transformations.

UNIT-3:Complex Integration – Definite Integral, Cauchy's Theorem, Cauchy's Integral Formula, Higher Derivatives.

UNIT-4: Series Expansions – Taylor's Series, Laurent's Series, Zeros of an Analytic Function, Singularities.

UNIT–5: Calculus of Residues– Residues, Cauchy's Residue Theorem, Evaluation of Definite Integrals.

TextBook:

❖ Arumugam.SandT.Issac—"ComplexAnalysis"—ScitechPublishingHouse—Chennai, (2002).

Books for Reference:

- ➤ Churchill.R.V.andJ.W.Brown—"Complex variables and Applications"—McGrawHillInternationalEditions—IXEdition,2013.
- ➤ Ponnuswamy.S "Foundations of Complex Analysis", Narosa Publication House, NewDelhi, IIEdition2005.
- ➤ Duraipandian.P and Lakshmi Duraipandian—"Complex Analysis"—Emerald Publications, Chennai (2001).

Semester-VI

Core-X GRAPH THEORY

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Core-X		Graph	75	0	-	4
			Theory				

Contact hours per semester:75

Contact hours per week:5

	o per meerice			
Year	Semester	Internal	External	Total marks
		Marks	Marks	
III	VI	25	75	100

Objective: To introduce the notion of graph theory and its applications and to learn the techniques in Graph Theory.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.)
CO1	Construct graph and to explain its definition.	K2,K3
	Determine degrees. Also to perform	
	operations on graph	
CO2	Classify degree sequence and graphic	K4,K5
	sequence. Illustrate connectedness,	
	compactness and connectivity.	
CO3	Construct Eulerian Graphs and Hamiltonian	K1,K6
	graphs. Elaborate the characterizations of	
	trees and to find centre of a tree.	
CO4	Interpret Planar graphs and to determine	K2, K6
	chromatic numbers and chromatic index.	
CO5	Explain Chromatic Polynomials and the	K4
	properties of digraphs.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

eo i so mapping (eouise in ticulation victiou)									
PSOs	PSO1	PSO2	PSO3	PSO4	PSO5				
Cos									

CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	1	3	2	3	2
CO4	2	2	1	1	2
CO5	1	2	1	1	3
Total contribution of	9	12	10	11	11
Cos to PSOs					
Weighted Percentage	60	80	66.67	73.33	73.33
of COs contribution					
to PSOs					

UNIT-1:

Definitionandexamples of graphs – degrees- subgraphs – isomorphism – independent sets and covering s – matrices – operations of graphs.

UNIT-2:

Degreesequences—graphicsequences—walks—trailsandpaths—connectednessandcomponents—connectivity.

UNIT-3:

Euleriangraphs-Hamiltoniangraphs, Trees and its characterization-centreofatree.

UNIT-4:

Planargraphs-Definition and properties—chromatic number and chromatic index.

UNIT-5:

Chromatic polynomials, definition and basic properties of digraphs, paths and connectedness in digraphs.

TextBook:

❖ Arumugam.S&S.Ramachandran—InvitationtoGraphTheory, Scitech Publications,Chennai,2002.

Booksforreference:

- ➤ Kumaravelu.SandSusheelaKumaravelu —Graphtheory-Nagercoil,2002.
- ➤ NarasinghDeo–Graphtheorywithapplicationtoengineeringandcomputer science, Prentice–HallofIndiapvt.Ltd.,NewDelhi,1979.

Semester-VI

Core-XI NUMBER THEORY

			110		20111		
Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Core-		Number	60	-	-	4
	XI		Theory				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To highlight the beauties in the world of numbers and to prepare the students for coding through congruence.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		_
CO1	Explain Peano's theorem and to utilize	K1,K5
	mathematical induction. Also to make use of	
	binomial theorem	
CO2	Illustrate Division Algorithm .Determine GCD .To	K3,K5
	deduce the Diaphantine equation ax+by=c	
CO3	Intrepret the fundamental theorem of	K2,K6
	arithmetic.Explain The Sieve of Eratosthenes and to	
	use Goldbach Conjecture.	
CO4	Summarize the basic properties of congruences and	K2, K4
	to apply Chinese Remainder Theorem	
CO5	Elaborate Fermat's Theorem, Wilson's Theorem	K6
	and to apply Kraitchik Factorization Method.	
17.1 D	1 1/2 1/1 / 1 1/2 / 1 1/4 / 1 1/5 5	1 + 1/(0 +

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	3	3	3	3	3
CO2	2	2	3	3	1
CO3	1	3	2	3	2

Page | 65

CO4	2	2	1	1	2
CO5	1	2	1	1	3
Total contribution of	9	12	10	11	11
COs to PSOs					
Weighted Percentage	60	80	66.67	73.33	73.33
of COs contribution					
to PSOs					

UNIT-1:

Peano's Axioms—Mathematical induction—The Binomial Theorem—Early Number Theory.

UNIT-2:

DivisionAlgorithm-GCD-EuclideanAlgorithm-TheDiaphantineEquationax+by=c.

UNIT-3:

ThefundamentalTheoremofArithmetic – TheSieve ofEratosthenes– TheGoldbachconjecture.

UNIT-4:

Basic properties of congruences—Linear congruence and The Chinese Remainder Theorem.

UNIT-5:

Fermat's Theorem-Wilson's Theorem-The Fermat-Kraitchik Factorization Method.

TextBook:

❖ David.M.Burton −ElementaryNumberTheory-Tata McGraw Hill Education Pvt. Ltd-(SixthEdition)-2007.

BooksforReference:

➤ IvanNivenand.H,Zuckerman-AnIntroductionto CambridgeUniversityPress-2019.

- TheoryofNumbers,
- ➤ Kumaravelu.S, andSusheelaKumaravelu-ElementsofNumber TheoryNagercoil,2002.

Semester-VI

Core-XII DYNAMICS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Core-		Dynamics	60	-	-	4
	XII		-				

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To provide a basic knowledge of the behaviour of objects in motion and to develop a working knowledge to handle practical problems.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		_
CO1	Illustrate projectiles and to find the equation of	K2,K3
	path,range and maximum height and time of flight.	
CO2	Elaborate about the collision of elastic	K1,K4
	bodies.Interpret law of impact and classify direct	
	and oblique impact.	
CO3	Determine simple harmonic motion in a straight	K2,K6
	line.Summarize the composition of SHM of the	
	same period in the same line and along two	
	perpendicular directions.	
CO4	Interpret motion under the action of central	K5,K6
	forces.Derive velocity and acceleration in polar	
	coordinates.	
CO5	Obtain the differential equation of central orbit	K3,K6
	.Also to deduce the pedal equation of central orbit.	
17.1 D	1 770 77 1 1 1 1 770 1 1 774 1 1 775 7	1 + 17.6.0

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					

CO1	3	3	3	3	3
CO2	2	2	3	3	2
CO3	3	3	2	3	2
CO4	2	2	3	1	2
CO5	2	2	2	1	3
Total contribution of	12	12	13	11	12
COs to PSOs					
Weighted Percentage	80	80	93.33	73.33	80
of COs contribution					
to PSOs					

UNIT-1:

Projectiles-Equation of path-range-maximum height-time offlight.

UNIT-2:

Collision of elastic bodies—Laws of impact—direct and oblique impact.

UINT-3:

Simple Harmonic Motion (SHM) in a straight line-Geometrical representation—composition of SHM of the same period in the same line and along two perpendicular directions.

UNIT-4:

Motion under the action of central forces—velocity and acceleration in polar co-ordinates.

UNIT-5:

Differential Equation of central orbit-pedal equation of central orbit-problems to find the law of force towards the pole when the orbit is given.

TextBook:

❖ Venkatraman, M.K.-A TextBook on Dynamics, Agasthiar Publication, Trichy, 2020.

Books for Reference:

- Narayanan, S-Dynamics, S.Chand& company(New Delhi), 16thEdition, 1986.
- Duraipandian.P, LaxmiDuraipandian and MuthamizhJayapragasam-Mechanics S.Chand& Company (2003).
- ➤ I.Rajeswari–Dynamics Saras Publication, Nagercoil, I edition (2019).

Semester-VI Core-XIII NUMERICAL METHODS

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Core-		Complex	75	-	-	4
	XIII		Analysis				

Contact hours per semester:75

Contact hours per week:5

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce finite differences and to solve numerical problems by different methods. **Course Outcomes**: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Obtain solution for numerical algebraic and	K1,K3,K4
	Transcendental equations by making use of	
	various methods.	
CO2	Find finite difference for first and higher	K2,K6
	order differences. To classify forward and	
	backward differences.	
CO3	To apply interpolation formula in Newton's	K5,K6
	Forward and backward, Guass Forward and	
	backward formula.	
CO4	Make use of numerical differentiation and	K3,K4
	integration in Newton's forward &backward	
	differences for differentiation. Also to utilize	
	Trapezoidal rule and Simpson's 1/3 and 3/8	
	rule.	
CO5	Solve Difference equations and to determine	K1,K6
	the order and degree of difference	
	equation. Solve linear difference equation and	

find complementary function and to deduce
particular Integral of the function.

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	2	3	3	3	3
CO2	2	2	3	3	1
CO3	2	3	2	3	2
CO4	2	2	2	3	2
CO5	1	2	2	2	3
Total contribution of	9	12	12	14	11
COs to PSOs					
Weighted Percentage of COs contribution to PSOs	73.33	80	80	93.33	73.33

Course Content

UNIT-1:

Solution of Numerical algebraic and Transcendental Equations: Bisection method—Newton's method. Criterion of order of convergence of Newton's method. Regula False method—Gausselimination—Gauss Jacobi—Gauss Seidalmethod.

UNIT-2:

Finite Difference: First and higher order differences – Forward and backward differences – PropertiesofOperator –Differencesofa polynomial–FactorialPolynomial.

UNIT-3:

Interpolation: Newton's Forward–backward, Gauss forward–backward interpolation formula–Bessel's formula. Divided differences – Newton's divided differenceformula – Lagrange'sinterpolationformula.

UNIT -4:

Numerical Differentiation and integration: Newton's forward and backward differences for differentiation- Derivatives using Bessel's formula-Trapezoidal rule-Simpson's 1/3 rule & 3/8 rule.

UNIT-5:

Difference equations: Definitions-order and degree of difference equation-Linear difference equation-finding complementary function-particular integral-simple applications.

TextBook:

Venkatraman.M.K-NumericalmethodsinScienceandEngineeringNationalPublishingCompany-Edition1998.

BooksforReference:

- Kandasamy.P.K.Thilagavathy and K.Gunavathy, Numerical Methods, S.Chand& CompanyLtd.Edn.2006.
- AutarKawandEgwwnEncKalu-NumericalmethodswithApplicationAbidet.Autokaw.com2ndEdtion,2011.
- ➤ Dr.A.Singaravelu ,Statistics&NumericalMethods,MeenakshiAgency(2012).

Major Elective- III ASTRONOMY

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Major		Astronomy	60	-	-	4
	Elective-		-				
	III						

Contact hours per semester: 60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
Ш	VI	25	75	100

Objective: To introduce the exciting world of Astronomy to students and to understand the movements of the celestial sphere.

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		S
CO1	Explain Spherical Trigonometry .Also to elaborate	K3,K5
	the fundamental of spherical	
	trigonometry, the sine, the cosine, four parts and	
	Napier's formula.	
CO2	Imagine the celestial sphere,Illustrate about the	K1,K4
	rising and setting of a star. Identify and Classify	
	circumpolar stars and morning, evening stars.	
CO3	Imagine Earth and to explain refraction. Deduce	K2,K6
	Tangent formula and Cassini's formula.	
CO4	Illustrate Geocentric parallax and Heliocentric	K3,K5
	parallax	
CO5	Elaborate Kepler's laws. Also to classify True	K6
	anomaly, mean anomaly and eccentric anomaly and	
	to obtain the relationship between them.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	2	3	3	3	3
CO2	2	2	3	3	1
CO3	2	3	2	3	2
CO4	2	2	2	3	2
CO5	2	1	2	2	3
Total contribution of	10	11	12	14	11
COs to PSOs					
Weighted Percentage	66.67	73.33	80	93.33	73.33
of COs contribution					
to PSOs					

UNIT-1:

SphericalTrigonometry:Sphericaltriangle—ThefundamentalformulaofSphericaltrigonometry, the sine, cosine, four parts and Napier formula (without proof) and simpleproblems.

UNIT-2:

The Celestial Sphere: Celestial co-ordinates—Diurnal motion—Rising and setting of a star sidereal time—circumpolar stars—Morning and evening stars—Twilight.

UNIT-3:

Earth – length of a day – Refraction – Tangent formula – Cassini's formula – Effects of refraction.

UNIT-4:

Geocentricparallax-Effects-Heliocentricparallax-Effects.

UNIT-5:

Kepler's laws -verification of Kepler's laws - True anomaly, mean anomaly, Eccentricanomaly-Relationbetween them.

TextBook:

❖ Kumaravelu.SandSusheelaKumaravelu –Astronomy for degree classes, RainbowPrinters,Nagercoil(2005).

BookforReference:

Ramachandran.G.V–Astronomy, Mission Press, Palayamkottai, 1965.

Semester-VI

Major Elective- III FUZZY MATHEMATICS

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Type	Code		(L)	(T)		(C)
Part-III	Major		Fuzzy	60	-	-	4
	Elective		Mathematics				
	-III						

Contact hours per semester:60

Contact hours per week :4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: Tointroduce fuzzyconceptstostudents and

tofacilitatethestudentstostudyfuzzyoperationsandfuzzynumbers

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		C
CO1	Explain Crisp sets and fuzzy sets and illustrate the	K1,K2
	characteristics and significance of Paradigm Shift.	
CO2	Elaborate the Additional properties of α cuts and	K1,K4
	the extension principle for fuzzy sets.	
CO3	Perform fuzzy set operations. Also to determine	K5,K6
	fuzzy complements, fuzzy intersections and fuzzy	
	unions.	
CO4	Determine fuzzy numbers and Linguistic	K2,K3,K4
	variables. Apply arithmetic operations on intervals	
	and on fuzzy numbers. Construct lattice of fuzzy	
	numbers.	
CO5	Analyze and classify fuzzy decision making	K5,K6
	,individual decision making, Multi person decision	
	making problems.	

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-1 O mapping (Cou	i se i ii tituli	ttion materi		1	
PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
Cos					
CO1	2	3	3	3	3
CO2	2	1	3	3	1
CO3	2	1	2	3	2
CO4	1	2	2	3	2
CO5	2	2	1	2	3
Total contribution of	9	9	11	14	11
COs to PSOs					
Weighted Percentage	60	60	73.33	93.33	73.33
of COs contribution					
to PSOs					

UNIT-1:

CrispSets-FuzzySets-BasicTypes-BasicConcepts-Characteristics and SignificanceofParadigmShift.

UNIT-2:

Additional properties of α-cuts-representations of fuzzy sets-Extension principle for fuzzy sets.

UNIT-3:

Fuzzysetoperations–Fuzzycomplements–Fuzzyintersections:t-norms–FuzzyUnions:t-conforms –Combinations of operations.

UNIT-4:

Fuzzy numbers – linguistic variables-arithmetic operations on intervals-arithmetic operations on fuzzy numbers-Lattice of fuzzy numbers-Fuzzy Equations.

UNIT-5:

Fuzzy decision making – Individual Decision Making-Multi-person decision making-fuzzy linear programming.

TextBook:

GeorgeJ.KlirandBoBoYuan— FuzzysetsandFuzzyLogicTheoryApplications,PrenticeHallofIndia,2002,NewDelhi.

Book forReference:

➤ GeorgeJ.KlirandTina.A.Folger–Fuzzy sets, uncertainty and Information – Prentice Hall ofIndia,2003,NewDelhi.

Semester-VI Major Elective- III MATHEMATICAL MODELLING

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Type	Code		(L)	(T)		(C)
Part-III	Major		Mathematical	60	-	-	4
	Elective		Modelling				
	-III						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To study the mathematical models through ODE and difference equations. **Course Outcomes**: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Illustrate mathematical modelling through ODE.	K1,k2
	Classify and elaborate linear growth, non-linear	
	and growth decay	
	problems, Compartment models, Dynamic problems	
	and geometrical problems.	
CO2	Explain population dynamics, Epidemics.Anlayze	K2,K3,K5
	the compartment models in	
	economics,medicines,arms race bullets and	
	international trade.	
CO3	Explain mathematical modelling problem through	K5,K6
	second order ODE.	
CO4	Illustrate mathematical modelling through	K2,K6
	difference equation.	
CO5	Explain mathematical modelling through graphs.	K3,K6

K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

CO-150 mapping (Co				I	I
PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	2	3	3	3	3
CO2	2	1	3	3	1
CO3	2	1	2	3	2
CO4	2	2	2	3	1
CO5	2	2	1	1	3
Total contribution of	10	9	11	13	10
COs to PSOs					
Weighted Percentage	66.67	60	73.33	86.67	66.67
of COs contribution					
to PSOs					

Course Content

UNIT-1:

(Mathematical modeling through O.D.E(First order)): Linear growth and Decay models –Non –linear growth and Decay models – Compartment Models –Dynamics Problems–GeometricalProblems.

Page | 76

UNIT-2:

Population dynamics – Epidemics – Compartment Models – Economics, Medicine, Arms race.BattlesandInternationalTrade.

UNIT-3:

(MathematicalModellingthroughO.D.E.(Secondorder)): Planetarymotion—circularmotion—Motionofsatellites—Modelling throughlineardifference equations of second order.

UNIT-4:

(MathematicalModellingthroughdifference equations):Basictheoryofdifferenceequation with constant coefficients – Economics and Finance –Populationdynamicsandgenetics—Probabilitytheory.

UNIT–5: (Modellingthroughgraphs): Solutions that can be modeled through graphs-models interms of directed graphs, signed graphs, weighted digraphs and unoriented graphs.

TextBook:

❖ Kapur.J.N – Treatment as in "Mathematical Modelling" New Age InternationalPublishers, 2004.

BooksforReference:

- ➤ Kapur.J.N–MathematicalModellinginBiologyandMedicine–EastWestPress–1985.
- ➤ Singh- Mathematical Modelling, International Bookhouse-2003.
- Frank R.Giordano, Maurice D. Weirand William P.Fox, Afirst course in mathematical modelling, Thomson Learning, London and New York, 2003.
- ➤ Kapur.J.N, Mathematic modeling, New Age International Pvt., Ltd., Reprint (2007).

Semester-VI Major Elective- IV OPERATIONS RESEARCH-II

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Major		Operations	60	-	-	4
	Elective		Research				
	-III						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
Ш	VI	25	75	100

Objective: To introduce games and strategies. Also to understand networking problems. **Course Outcomes:** On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		_
CO1	Interpret the games and strategies. Solve two	K2,K3
	persons zero sum games.Make use of mixed	
	strategies and dominance property.	
CO2	Analyze the replacement of items that deteriorate	K1,K5
	with time. Illustrate replace montage of a machine	
	taking money value into consideration and elaborate	
	the replacement of items that completely fail	
	suddenly and Staffing problems.	
CO3	Explain the queueing models and to classify into	K4,K6
	(M/M/1:FCFS),(M/M/1:∞/FCFS),(M/M/S:/FCFS)	
CO4	Compose network scheduling using PERT/CPM.	K2,K3
	Explain the rules of network construction. Make use	
	of PERT calculation.	
CO5	Analyse and solve inventory control problems.	K5,K6

➤ K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	2	3	3	2	3
CO2	2	1	3	2	1
CO3	2	1	2	2	2
CO4	2	2	2	2	1
CO5	1	2	1	1	3
Total contribution of	9	9	11	9	10
COs to PSOs					
Weighted Percentage	60	60	73.33	60	66.67
of COs contribution					
to PSOs					

UNIT-1:

Games and Strategies: Two Person Zero sum Games – The Maximin – Minimax Principle –Games without Saddle Points – Mixed Strategies – Graphical Solution of 2xn and mx2 games–DominanceProperty.

UNIT-2:

Replacement of items that deteriorate with time – replace montage of a machine taking moneyvalue into consideration – replacement of items that completely fail suddenly and StaffingProblems.

UNIT-3:

Queueingmodels:Generalconceptanddefinitions—characteristics—properties of Poisson process Models (M/M/1:/FCFS), (M/M/1: ∞ /FCFS), (M/M/S:/FCFS).

UNIT-4:

Networks SchedulingbyPERT/CPM:Networkandbasiccomponents—RulesofNetworkConstruction—TimeCalculation in network—CriticalPathMethod—PERTCalculation.

UNIT-V:

Inventory Control :Introduction—Typesof Inventories—Inventory decisions—Deterministic inventory Problem—EOQ problems without shortages.

TextBook:

★ KantiSwarup,P.K.GuptaandManmohan—OperationsResearch—SultanChand&Sons—2006, 12thEdition.

Books for Reference:

- ➤ Gupta.P.KandD.S.Hira-OperationsResearch-S.Chand&sons-VIIEdition..
- ➤ B.J.RanganathandA.S.Srikantappa—OperationsResearch, YesDeePublishingHouse, Chennai (2017).
- ➤ Hillier, F.S. and G.J. Lieberman Introduction to Operations Research, 9th Ed., TataMcGrawHill, Singapore, 2009.
- ➤ HamdyA. Taha, -OperationsResearch, AnIntroduction, 8thEd., Prentice—HallIndia, 2006.
- ➤ Hadley.G.-LinearProgramming,NarosaPublishingHouse,NewDelhi,2002.

Semester-VI Major Elective- IV CODING THEORY

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credits
	Type	Code	Title	(L)	(T)		(C)
Part-III	Major		Coding	60	-	-	4
	Elective		Theory				
	–IV						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
Ш	VI	25	75	100

Objective: To introduce coding and decoding concepts. Also to develop the students in the field of coding theory

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		C
CO1	Analyze and illustrate basic assumptions and correcting ,detecting error patterns. Also to interpret effects of error correction and detection.	K3,K4
CO2	Elaborate linear codes and illustrate the bases for C and C ⁺ generating matrices on coding	K1,K2
CO3	Illustrate parity check matrices and determine the equivalent codes	K3,K5
CO4	Explain some bounds for codes and classify perfect codes, hamming codes, extended codes, the extended Golay code and decode them.	K4,K6
CO5	Summarize about polynomials and words, cycliccodes. Make use of polynomial encoding and decoding	K6

[➤] K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
1508	1301	1302	1303	1304	1303
Cos					
CO1	1	3	3	2	3
CO2	2	1	3	2	1
CO3	2	1	2	2	2
CO4	2	2	3	2	1
CO5	3	2	3	2	3
Total contribution of	10	9	14	10	10
COs to PSOs					
Weighted Percentage	66.67	60	93.33	66.67	66.67
of COs contribution					
to PSOs					

UNIT -1:

Introduction to coding theory, Basicassumptions, Correctinganddetectingerrorpatterns-informationrate-effectsoferrorcorrectionanddetection -findingthemostlikelycode word transmitted.

UNIT-2:

Linear codes–subspacesindependence–basis,dimension–matrices–BasesforCand C⁺generating matrices on coding.

UNIT-3:

Parity check matrices— equivalent codes—distance of a linear code—Linear codes — cosets — MLDforlinear codes—ReliabilityofIMLDforlinearcodes.

UNIT-4:

Someboundsforcodes—perfectcodes—hammingcodes—extendedcodes—TheextendedGolaycode—decoding the extendedGolaycode—Golaycode.

UNIT-5:

Polynomialandwords-introductiontocycliccodes- Polynomialencodinganddecoding-findingcyclic codes-Dualcycliccodes.

Text Book:

❖ Codingtheory, Theessentials—MarcelDekker, Inc. MadtrisonAvenue, NewYork.

Books for Reference:

- ➤ ElwynBerlekamp— AlgebraicCodingTheory—Springer-1970
- ➤ San Ling and Chaoping Xing, coding theory A first course, Cambridge University Press, New York (2004)

Semester-VI Major Elective- IV PROGRAMMING IN C++

Category	Course	Course	Course Title	Lecture	Tutorial	Practical	Credits
	Type	Code		(L)	(T)		(C)
Part-III	Major		Programming	60	-	-	4
	Elective		in C++				
	-IV						

Contact hours per semester:60

Contact hours per week:4

Year	Semester	Internal Marks	External Marks	Total marks
III	VI	25	75	100

Objective: To introduce coding and decoding concepts. Also to develop the students in the field of coding theory

Course Outcomes: On successful completion of the course, the students should be able to

CO	Course Outcome	Knowledge Level
No.		
CO1	Illustrate and make use of the concepts of tokens,	K3,K4
	expressions and control structures	
CO2	Utilize the functions in C++ and to apply it while	K1,K2
	writing programs	
CO3	Interpret constructors and destructors	K3,K5
CO4	Explain and apply operator overloading while	K4,K6
	writing programs	
CO5	Make use of inheritance and classes to compile a	K6
	program	

➤ K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5-Evaluate, K6-Create

CO-PSO mapping (Course Articulation Method)

PSOs	PSO1	PSO2	PSO3	PSO4	PSO5
COs					
CO1	1	3	3	2	3
CO2	2	1	3	2	1
CO3	2	2	2	2	2
CO4	2	3	3	2	3
CO5	2	3	3	2	3
Total contribution of	9	12	14	10	12
COs to PSOs					
Weighted Percentage	60	80	93.33	66.67	80
of COs contribution					
to PSOs					

Course Content:

Unit-I:Tokens, Expressions and control structures

Introduction, Tokens, Keywords, Identifiers and constants, Basicdata types, Userdefined data types, storageclasses, Derived data types, Symbolic constants.

UNIT-II: Functions in C++

Introduction ,Themain function, functionprototyping, Call by reference, Return by references, Inlinefunctions, Defaultarguments, constant Arguments, Recursion, Functionoverloading, Friend and virtual functions, Math library functions, C structures Revisited, Specifying a class, Defining member functions, A C++ program with class, Making an outside functions inline, Nesting member functions, Private member functions, Arrays within a class, Memory allocation for objects, Staticmember functions, Array of objects, objects as function arguments, Friend functions, Returning objects.

UNIT-III: Constructors and Destructors

Introduction, Constructors, Parameterizedconstructors, Multipleconstructors in a class, Constructors with default arguments, Dynamic initialization of objects, Copy constructor, , Constructing Two-dimensional arrays, constant objects, Destructors.

UNIT-IV: Operator Overloading and Type Conversations

Introduction, Defining operator overloading, Overloading unary operator, Overloading Binary operator, Overloading Binary operators using Friends, Manipulation of strings using operators, Some other operator overloading examples, Rules for Overloading Operators

UNIT-V:Inheritance: Extending Classes

Introduction, Defining Derived classes, Single inheritance, Making a private member inheritable, Multilevelinheritance, Multipleinheritance, Hierarchicalinheritance, Hybridinheritance.

Text Book:

❖ E.BalaguruSamy,Object Oriented Programming with C++,TataMcGraw Hill Education Private Limited, New Delhi(Fifth Print 2012).

Book for References:

ReemaThareja, Object Oriented Programming with C++, Oxford University Press(January 2018)